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Summary

1. Pseudodifferential operators and their symbols

2. Noncompact manifolds

3. Quantum ergodicity

This talk is partially based on work in progress with Galina Levitina,
Edward McDonald, Fedor Sukochev, and Dmitriy Zanin.
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Pseudodifferential operators and
their symbols



Hamiltonian mechanics

We will regard ΨDOs through the lens of quantisation.

In classical mechanics, the configuration space of a physical system
is the cotangent space T∗M. An observable is a function f : T∗M→ R.

Given a Hamiltonian H : T∗M→ R, the time-evolution of f is given by
df
dt = {f,H},

where in local coordinates the Poisson bracket is defined as

{f,g} :=
∑
j

(
∂f
∂xj

∂g
∂ξj

− ∂f
∂ξj

∂g
∂xj

)
.

Note that { · ,H} =
∑

j
(
∂H
∂ξj

∂
∂xj −

∂H
∂xj

∂
∂ξj

)
forms a vector field on T∗M,

which is called the Hamiltonian vector field. The corresponding flow
on T∗M is denoted ΦH(t).
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Quantum mechanics

For physical and philosophical reasons, in quantum mechanics the
configuration space must be a Hilbert space. Observables should be
self-adjoint operators.

The time-evolution of a state ξ ∈ H in a Hilbert space is governed by
one-parameter unitary groups ξ(t) = eitHξ. Equivalently, the
observables B ∈ L(H)sa evolve as B(t) = e−itHBeitH. It follows that

d
dtB(t) = e−itH[B,H]eitH.
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Quantisation

To give quantum mechanics some content, we need a way to assign
self-adjoint operators to the classical observables f ∈ C∞(T∗M;R).

We ideally want an assignment Op : C∞(T∗M) → L(H) such that

1. for α ∈ R, Op(α) = αI;
2. for ϕ : R → R a smooth function and Op(f) self-adjoint,

Op(ϕ ◦ f) = ϕ(Op(f));
3. Op(f+ g) = Op(f) + Op(g);
4. Op({f,g}) = i[Op(f),Op(g)].

This is too much to ask for, but pseudodifferential operators get
really close. Points 2 and 4 will at best only hold ‘up to lower order
operators’.
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ΨDOs

Definition (Pseudodifferential operators on Rd)
We say that a ∈ Sm(Rd × Rd), m ∈ R, if a ∈ C∞(Rd × Rd) and if

|∂β
x ∂

α
ξ a(x, ξ)| ≤ Aαβ〈ξ〉m−|α|, α, β ∈ N, x, ξ ∈ Rd,

here 〈ξ〉 := (1+ |ξ|2)1/2. We define the operator Ta : S(Rd) → S(Rd)

Taf(x) :=
∫
Rd
e2πix·ξa(x, ξ)̂f(ξ)dξ, f ∈ S(Rd).

The class of operators Ta is denoted Ψm(Rd).

On manifolds, we can glue such operators together (up to smoothing
operators) to obtain ΨDOs on manifolds. Symbols can be defined as
functions on the cotangent space T∗M.
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Classical pseudodifferential operators

Let Rd be the radial compactification of Rd: we glue a ‘celestial
sphere’ Sd−1 to Rd at ‘infinity’. That is, for the function
ρ : Rd \ {0} → R defined by ρ(x) = 1

|x| , we are adding the zero
level-set to Rd.

More rigorously:

Rd :=

(
Rd t

(
Sd−1 × [0, 1)ρ

))/
∼, Rd 3 (θ, r) ∼ (θ, ρ) if ρ =

1
r .

Classical ΨDOs
For a ∈ S0(Rd × Rd), we say that a is a classical symbol if a extends
to a ∈ C∞(Rd × Rd). More generally, a ∈ Smcl (Rd × Rd) if
a(x, ξ)〈ξ〉−m ∈ C∞(Rd × Rd).

The corresponding pseudodifferential operators are denoted by
Ψm
cl (R

d).
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Classical pseudodifferential operators (II)

By Taylor’s theorem, the condition that a ∈ C∞(Rd × Rd) is
equivalent to the existence of an asymptotic expansion

a(x, ξ) ∼
∞∑
k=0

a−k(x, ξ), a−k ∈ S−k(Rd × Rd),

where each a−k(x, tξ) = t−ka−k(x, ξ) for |ξ| ≥ 1, t ≥ 1.

Likewise, on manifolds we can radially compactify the fibres of T∗M,
denoted by T∗M. We say that a ∈ Smcl (T∗M) is a classical symbol if
a〈ξ〉−m extends to C∞(T∗M).
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Principal symbols

For this compactification, we have a boundary

∂T∗M := T∗M \ T∗M ' S∗M,

explicitly for Rd given by Rd × Sd−1.

For a classical symbol a ∈ S0cl(T∗M), we call the restriction

a0 := a|S∗M ∈ C∞(S∗M),

the principal part of a.

It’s not too surprising that this also arises as

[a] ∈ S0cl(T∗M)/S−1(T∗M),

and that we have an exact sequence

0→ S−1(T∗M) → S0cl(T∗M) → C∞(S∗M) → 0.

NB: this story also works for different compactifications!
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Sequined donut

The space S∗M is a sphere bundle on M: at each point in M the fibre
is a sphere Sd−1. For a two-dimensional space, this looks like sequin
fabric.
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Exact sequences

On the level of operators, the principal symbol of T ∈ Ψ0
cl(M),

denoted by σ0(T), is the image of T in the quotient Ψ0
cl(M)/Ψ

−1
cl (M).

In fact, we also have an exact sequence

0→ Ψ−1
cl (M) → Ψ0

cl(M) → C∞(S∗M) → 0.
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Quantisation revisited

For A,B ∈ Ψ0
cl(M), we now indeed have

1. σ0(αI) = α, α ∈ R;

2. For P a polynomial, we have that P(A) ∈ Ψ0
cl and

σ0(P(A)) = P ◦ σ0(A) (can be improved to functions in Sm(R));
3. σ0(A+ B) = σ0(A) + σ0(B);
4. σ−1(i[A,B]) = {σ0(A), σ0(B)}.

Of course, other quantisations exist too.
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Egorov’s Theorem

Egorov’s theorem
Let A ∈ Ψ1

cl(M) with symbol a ∈ S1cl(T∗M) be a self-adjoint elliptic
classical ΨDO (elliptic meaning that σ0(A) is nowhere 0). Then for
B ∈ Ψ0

cl(M), we have that e−itABeitA ∈ Ψ0
cl(M) and

σ0
(
e−itABeitA

)
= σ0(B) ◦ Φa(t),

where Φa(t) is the flow of the Hamiltonian vector field generated by
a, i.e.

d
dt

∣∣∣∣
t=0

f ◦ Φa(t) = {a, f}.

This theorem relates the time-evolution of Hamiltonian mechanics
to the time-evolution of the corresponding quantised observables.
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Geodesic flow

For a Riemannian manifold (M,g), we define the geodesic flow

Gt : SM→ SM, t ∈ R,

in the usual way. By duality, we can likewise define Gt : S∗M→ S∗M,
where S∗M ⊆ T∗M.

The geodesic flow Gt coincides with the flow with the Hamiltonian
vector field generated from

√
∆g restricted to S∗M, where ∆g is the

Laplace–Beltrami operator. Namely, the vector field { · , ‖ξ‖} on T∗M
is locally given by 1

∥ξ∥
∑

j ξj∂xj . Hence,

σ0
(
e−it

√
∆gBeit

√
∆g

)
= σ0(B) ◦ Gt.
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A C∗-algebraic approach

On a compact manifold M, we have that operators in Ψ−1(M) extend
to compact operators on L2(M). In fact,

K(L2(M)) ∩Ψ0
cl(M) = Ψ−1

cl (M).

The exact sequence

0→ Ψ−1(M) → Ψ0
cl(M) → C∞(S∗M) → 0,

can be upgraded to an exact sequence of C∗-algebras (this is not
immediate)

0→ K(L2(M)) ∩Ψ0
cl(M)

∥·∥
→ Ψ0

cl(M)
∥·∥

→ C(S∗M) → 0.

Through Egorov’s theorem and Stone–Weierstrass, it’s not too
difficult to see that we also have

C∗
( ⋃
t∈R

e−it
√
∆C∞(M)eit

√
∆ + K(L2(M))

)/
K(L2(M)) ' C(S∗M).
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Noncommutative cosphere bundle

For a (compact) spectral triple (A,H,D), we define (Connes ’96,
Golse–Leichtnam ’98)

S∗A := C∗
( ⋃
t∈R

e−it|D|Aeit|D| + K(H)

)/
K(H).

This C∗-algebra comes with automorphisms

σt(a+ K(H)) = e−it|D|aeit|D| + K(H).

In the commutative case, we recover C(S∗M) with its geodesic flow.
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Microlocal Weyl law

Weyl’s law gives for a compact Riemannian manifold (M,g),

Tr(χ[0,λ](∆)) ∼ Cdvol(M)λ d
2 , λ → ∞.

There exists a local version of Weyl’s law, which gives for f ∈ C∞(M),

Tr(Mfχ[0,λ](∆)) =

N(λ)∑
n=0

〈en,Mfen〉 ∼ Cdλ
d
2

∫
M
f dνg, λ → ∞.

Or, even, a microlocal Weyl law, which states for A ∈ Ψ0(M),

Tr(Aχ[0,λ](∆)) =

N(λ)∑
n=0

〈en,Aen〉 ∼ Cdλ
d
2

∫
S∗M

σ0(A)dµ, λ → ∞.

Connes exploited these laws to obtain an operator algebraic
approach to integration.
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Dixmier traces

Let H be a Hilbert space. An eigenvalue sequence of a compact
operator A ∈ K(H) is a sequence {λ(k,A)}k∈N of the eigenvalues of A
listed with multiplicity, such that {|λ(k,A)|}k∈N is non-increasing.

The usual operator trace Tr can be characterised for trace class
operators A ∈ L1 ⊂ K(H) as

Tr(A) = lim
n→∞

n∑
k=1

λ(k,A).

The Dixmier trace is defined on so-called weak trace class operators
A ∈ L1,∞ ⊂ K(H) by

Trω(A) = ω- lim
n→∞

1
log(2+ n)

n∑
k=1

λ(k,A),

where ω ∈ ℓ∞(N)∗ is an extended limit. Note that L1 ⊂ L1,∞, but if
A ∈ L1, Trω(A) = 0.
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Connes’ integral formula

Connes proved the following.

Connes’ Integral Formula
Let (M,g) be a compact Riemannian manifold, f ∈ C∞c (M). Then for
any Dixmier trace Trω ,

Trω(Mf(1−∆g)
− d

2 ) = Cd
∫
M
f dνg.

Or stronger, for A ∈ Ψ0
cl(M),

Trω(A(1−∆g)
− d

2 ) = Cd
∫
S∗M

σ0(A)dµ.

Connes’ result is in fact even stronger, as he does not assume a
Riemannian structure.
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Non-compact manifolds



The problem

Before thinking about non-compact spectral triples, we need to think
about non-compact manifolds. For simplicity I will now just consider
Rd.

No longer is every operator of order −1 compact. A particularly bad
example on Rd is

g(∇) ∈ Ψ−∞(Rd), g ∈ C∞c (Rd).

In particular, not every operator in Ψ−d
cl (M) is in L1,∞ ⊆ K(H) either.

While C∞(S∗M) ' Ψ0
cl(M)/Ψ−1(M), it is therefore no longer true that

C(S∗M) ' Ψ0
cl(M)

∥·∥
/K(L2(M)).
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Scattering Calculus

Definition (Scattering ΨDOs on Rd)
We say that a ∈ Sm,l

sc (Rd × Rd), m, l ∈ R, if a ∈ C∞(Rd × Rd) and

|∂β
x ∂

α
ξ a(x, ξ)| ≤ Aαβ〈x〉l−|β|〈ξ〉m−|α|, α, β ∈ N, x, ξ ∈ Rd.

Recall that 〈ξ〉 := (1+ |ξ|2)1/2.

We define Ψm,l
sc (Rd) accordingly. Note that Ψm,0

sc (Rd) ⊊ Ψm(Rd).

Amazingly, Ψm,l
sc (Rd) ⊆ K(H) if both m, l < 0.
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Classical scattering ΨDOs

Again we can take a shortcut to define classical scattering
pseudodifferential operators.

Definition (classical scattering ΨDOs on Rd)
Let Rd be the radial compactification of Rd.

We define Sm,l
sc,cl(R

d × Rd) ⊆ Sm,l
sc (Rd × Rd) as those a for which

a(x, ξ)〈x〉−l〈ξ〉−d extends to a smooth function C∞(Rd × Rd).

Accordingly, we define Ψm,l
sc,cl(R

d) ⊆ Ψm,l
sc (Rd).

Note that by Taylor’s theorem, this is equivalent to a(x, ξ) admitting
asymptotic expansions of the right kind as x→ ∞, as ξ → ∞, and as
both x, ξ → ∞.
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Scattering cotangent bundle

We write scT∗Rd := Rd × Rd for the (compactified) scattering
cotangent bundle on Rd. This is a compact manifold with corners,
consisting of strata

scT∗Rd = (Rd × Rd) t (Sd−1 × Rd) t (Rd × Sd−1) t (Sd−1 × Sd−1)

Rd × Rd

Rd × Sd−1

Sd−1 × Rd

Sd−1 × Sd−1

22



Scattering cosphere bundle

Now the principal symbol lives on ∂scT∗Rd, which consists of the
strata

∂(scT∗Rd) ' (Rd × Sd−1) t (Sd−1 × Rd) t (Sd−1 × Sd−1).

For A ∈ Ψm,l
sc,cl(R

d), the equivalence class [A] ∈ Ψm,l(Rd)/Ψm−1,l−1(Rd)

corresponds in a natural way to a smooth function in C∞(∂scT∗Rd).
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The C∗-algebraic principal symbol

Since operators in Ψ−ε,−ε
sc are compact in the scattering calculus, we

obtain the following.

Lauter–Moroianu (2001)
We have an exact sequence of C∗-algebras

0→ Ψ0,0
sc,cl

∥·∥
∩ K(L2(Rd)) → Ψ0,0

sc,cl

∥·∥
→ C(∂scT∗Rd) → 0.

24



Examples

For f ∈ C∞c (Rd), we have Mf(1+∆)−
d
2 ∈ Ψ−d,−∞

sc,cl (Rd), we have
Mf(1+∆)−

d
2 ∈ L1,∞, and

Trω(Mf(1+∆)−
d
2 ) =

vol Sd−1
d(2π)d

∫
Rd
f(x)dx.

Note that the (−d,−d)-principal symbol of Mf(1+∆)−
d
2 is a function

on
(Rd × Sd−1) t (Sd−1 × Rd) t (Sd−1 × Sd−1),

and in this case it is
f(x) t 0 t 0.

The formula above is the integral of this!
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Examples (II)

For the Fourier transform of Mf(1+∆)−
d
2 , which is f(∇)M⟨x⟩−d , we

likewise have f(∇)M⟨x⟩−d ∈ Ψ−∞,−d
sc,cl (Rd), and

Trω(f(∇)M⟨x⟩−d) =
vol Sd−1
d(2π)d

∫
Rd
f(x)dx.

In this case, the principal symbol is

0 t f(ξ) t 0.

Again, we obtain the integral of this.
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Known result

One might think that Ψ−d,−d
sc,cl (Rd) ⊆ L1,∞, but this is not true:

M−d
⟨x⟩(1+∆)−

d
2 6∈ L1,∞.

Theorem (Nicola 2003)
Let P ∈ Ψ−d,−d−1

sc,cl (Rd). Then P ∈ L1,∞, and

Trω(P) =
1

d(2π)d

∫
Rd×Sd−1

σ−d,−d
sc (P)dµ.

If P ∈ Ψ−d−1,−d
sc,cl (Rd), the same formula holds with integral over

Sd−1 × Rd.

If P ∈ Ψ−d,−d
sc,cl (Rd), then

lim
N→∞

1(
log(N+ 2)

)2 N∑
n=0

λ(n,P) =
∫
Sd−1×Sd−1

σ−d,−d
sc (P)dµ.
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New result

Theorem (H.–Levitina–McDonald–Sukochev–Zanin, WIP)
Let P ∈ Ψ−d,−d

sc,cl (Rd). Then P ∈ L1,∞ if and only if
σ−d,−d
sc (P) ∈ L1(∂T∗scRd), in which case

Trω(P) =
1

d(2π)d

∫
∂T∗scRd

σ−d,−d
sc (P)dµ.

This is a variant on known spectral asymptotics by Battisti–Coriasco
(2011).

Note: if P ∈ L1,∞ ∩Ψ−d,−d
sc,cl (Rd), then its principal symbol is zero at

the corner Sd−1 × Sd−1. The relevant part of the measure dµ here is
the Lebesgue measure on Rd × Sd−1 t Sd−1 × Rd.
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Scattering cotangent bundle

Moving to more general non-compact manifolds, we can mimic the
construction of scT∗Rd = Rd × Rd. Recall that we defined Rd via a
boundary defining function ρ(x) = 1

|x| .

Take now a compact manifold M with boundary, and consider a
boundary defining function ρ such that ρ > 0 on the interior M◦, and
dρ 6= 0 at ∂M.

Scattering (co)tangent bundle
Let (y1, . . . , yn) be a local coordinate system of ∂M near p ∈ ∂M.
Then (ρ, y1, . . . , ρn) forms a coordinate system of M near p. Let
Vsc(M) be the vector fields that are at every p ∈ ∂M the C∞(M)-span
of

x2∂x, x∂y1 , . . . , x∂yn .

This defines a vector bundle scTM, and a dual scT∗M.
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Melrose square

The vector bundle scT∗M has fibres Rn, which can be radially
compactified. This results in a compact space scT∗M, which looks like

scT∗M◦

scS∗M◦

scT∗∂MM

scS∗∂MM
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Quantum Ergodicity



Quantum Ergodicity

A one-particle system described by an operator H on L2(M) is called
quantum ergodic if the high energy states of H are ‘smeared’ over M.

Quantum Ergodicity
A positive self-adjoint operator ∆ on L2(M) with compact resolvent,
where M is a compact Riemannian manifold, is said to be quantum
ergodic if for every orthonormal basis {en}∞n=0 of L2(M) consisting
of eigenfunctions of ∆, there exists a density one subsequence
J ⊆ N such that

lim
J∋j→∞

〈ej,Op(a)ej〉L2(M) →
1

vol(S∗M)

∫
S∗M

a0 dµ, Op(a) ∈ Ψ0
cl(M),

where ν is a probability measure on S∗M. In this context, a density
one subsequence means that

#(J ∩ {0, . . . ,n})
n+ 1 → 1, n→ ∞.

31



Quantum Ergodicity

A one-particle system described by an operator H on L2(M) is called
quantum ergodic if the high energy states of H are ‘smeared’ over M.

Quantum Ergodicity
A positive self-adjoint operator ∆ on L2(M) with compact resolvent,
where M is a compact Riemannian manifold, is said to be quantum
ergodic if for every orthonormal basis {en}∞n=0 of L2(M) consisting
of eigenfunctions of ∆, there exists a density one subsequence
J ⊆ N such that

lim
J∋j→∞

〈ej,Op(a)ej〉L2(M) →
1

vol(S∗M)

∫
S∗M

a0 dµ, Op(a) ∈ Ψ0
cl(M),

where ν is a probability measure on S∗M. In this context, a density
one subsequence means that

#(J ∩ {0, . . . ,n})
n+ 1 → 1, n→ ∞.

31



Pictures

Figure 1: Eigenfunctions of the
Laplacian on a rose-shaped domain,
quantum ergodicity unknown.

Figure 2: Eigenfunctions of the
Laplacian on the disc, not quantum
ergodic.
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Pictures

Figure 3: Typical eigenfunction of the Laplacian on a stadium, proven to be
quantum ergodic! Credit of the picture to Douglas Stone.
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Fundamental theorem of QE

The fundamental theorem that started the field of Quantum
Ergodicity is the following.

Theorem (Shnirelman 1974, Zelditch 1987, Colin de Verdière 1985)
Let M be a compact Riemannian manifold. If the geodesic flow on M
is ergodic, then the Laplace–Beltrami operator ∆g is quantum
ergodic.

By now, various extensions of this theorem exist. The common
thread is to study geodesic flow, and translate this into asymptotic
behaviour of eigenfunctions of an operator.
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QE as a Weyl law

We can interpret Quantum Ergodicity as a stronger microlocal Weyl
law. Namely, the QE property

lim
J∋j→∞

〈ej,Aej〉L2(M) →
1

vol(S∗M)

∫
S∗M

σ0(A)dµ, A ∈ Ψ0(M),

is equivalent by the Koopman–von Neumann lemma to

lim
N→∞

1
N+ 1

N∑
n=0

∣∣∣∣〈en,Aen〉 − 1
vol(S∗M)

∫
S∗M

σ0(A)dµ
∣∣∣∣ = 0, A ∈ Ψ0(M).

This is now recognisable as a stronger version of the microlocal Weyl
law

lim
N→∞

1
N+ 1

N∑
n=0

〈en,Aen〉 −
1

vol(S∗M)

∫
S∗M

σ0(A)dµ = 0, A ∈ Ψ0(M).
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Comparison

Now compare the microlocal Weyl law
Tr(PλAPλ)

Tr(Pλ)
λ→∞−−−−→ 1

vol(S∗M)

∫
S∗M

σ0(A)dµ,

with Connes’ formula

Trω(A(1−∆)−
d
2 ) = Cd

∫
S∗M

σ0(A)dµ.

H.–McDonald
Let H be a separable Hilbert space, A ∈ B(H), D self-adjoint with
compact resolvent, Pλ := χ[−λ,λ](D). If D satisfies Weyl’s law
λ(k, |D|) ∼ Ck 1

d , then for all Dixmier traces Trω ,

Trω(A(1+ D2)− d
2 )

Trω((1+ D2)− d
2 )

= ω ◦M
(

Tr(PλnAPλn)
Tr(Pλn)

)
.

Here, M : ℓ∞ → ℓ∞ is the logarithmc averaging defined by
M(x)n = 1

log(n+2)
∑n

k=0
xk
k .
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Truncated Spectral Triples

If we have a spectral triple (A,H,D), lots of noncommutative
geometers are interested in truncated triples (PλAPλ,PλH,PλD) (e.g.
Connes–van Suijlekom, D’Andrea–Lizzi–Martinetti).

Our result shows that if (A,H,D) is d-dimensional and D satisfies
Weyl’s law, then

PλAPλ 7→ Tr(PλAPλ)
Tr(Pλ)

is a reasonable approximation of the noncommutative integral
Trω(A(1+ D2)− d

2 ).
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NCG ergodicity

Since ergodicity of the geodesic flow is a measure theoretic
statement, we need to take one more step.

L2-cosphere bundle
Let (A,H,D) be a regular spectral triple where D satisfies Weyl’s
law. Then

τ(A+ K(H)) =
Trω(A(1+ D2)− d

2 )

Trω((1+ D2)− d
2 )

, A+ K(H) ∈ S∗A,

defines a finite positive trace on S∗A. Then define L2(S∗A) as the
Hilbert space of the GNS representation of S∗A corresponding to τ .

The geodesic flow σt on S∗A descends to a unitary operator on
L2(S∗A).
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NCG QE

We can now naively put forward a definition of ergodic geodesic flow
for spectral triples. Namely, we say that the geodesic flow σt is
ergodic on (A,H,D) if the only σt-invariant element of L2(S∗A) is the
identity.

NCG QE (H.–McDonald)
Let (A,H,D) be a d-summable regular spectral triple where D
satisfies Weyl’s law, and with local Weyl laws. If the geodesic flow
on (A,H,D) is ergodic, then D is quantum ergodic. That is, for every
basis {en}∞n=0 of H consisting of eigenvectors of D, there exists a
density one subset J ⊆ N such that

lim
J∋j→∞

〈ej,aej〉 =
Trω(a(1+ D2)− d

2 )

Trω((1+ D2)− d
2 )

, a ∈ A.
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Thank you!

Thanks for listening!
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