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Hamiltonian mechanics

We will regard WDOs through the lens of quantisation.

In classical mechanics, the configuration space of a physical system
is the cotangent space T*M. An observable is a function f: T*M — R.

Given a Hamiltonian H : T"M — R, the time-evolution of f is given by

df
ﬁ - {ﬁH}a
where in local coordinates the Poisson bracket is defined as
_ 9f9g  9f 99
{ﬁ g} o ; (an 051 851 (9Xj ’

Note that {-,H} = 3; (82 & — g—f/a%) forms a vector field on T*M,

which is called the Hamiltonian vector field. The corresponding flow
on T*M is denoted ®,(t).



Quantum mechanics

For physical and philosophical reasons, in quantum mechanics the
configuration space must be a Hilbert space. Observables should be
self-adjoint operators.



Quantum mechanics

For physical and philosophical reasons, in quantum mechanics the
configuration space must be a Hilbert space. Observables should be
self-adjoint operators.

The time-evolution of a state £ € H in a Hilbert space is governed by
one-parameter unitary groups £(t) = e™¢. Equivalently, the
observables B € L(H)sq, evolve as B(t) = e~™Be'™. It follows that

d

v _ —itH itH
dtB(t) e '""[B, H]e"".
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To give quantum mechanics some content, we need a way to assign
self-adjoint operators to the classical observables f € C°°(T*M; R).

We ideally want an assignment Op : C*°(T*M) — L(#) such that

1. for o € R, Op(a) = a;
2. for ¢ : R — R a smooth function and Op(f) self-adjoint,
Op(¢ o f) = #(Op(f));
3. Op(f+9g) = Op(f) + Op(9);
4. Op({f, g}) = 1[Op(f), Op(9)]-
This is too much to ask for, but pseudodifferential operators get

really close. Points 2 and 4 will at best only hold ‘up to lower order
operators.



Definition (Pseudodifferential operators on RY)
We say that a € S"(RY x RY), m € R, if a € C*(RY x RY) and if

108 0ga(x,€)] < Aap©)™ 1, a,BEN,x,£€RY,
here (€) := (1+ |¢]?)/2. We define the operator T, : S(RY) — S(RY)

Toff) = [ e alx efte)de, Fe SR,

The class of operators T, is denoted W™ (RY).



Definition (Pseudodifferential operators on RY)
We say that a € S"(RY x RY), m € R, if a € C*(RY x RY) and if

|00 a(x, €)] < Aap(&)™ 1, @, B €N, x,£ €RY,
here (€) := (1+ |¢]?)/2. We define the operator T, : S(RY) — S(RY)
Toff) = [ e alx efte)de, Fe SR,
The class of operators T, is denoted W™ (RY).
On manifolds, we can glue such operators together (up to smoothing

operators) to obtain WDOs on manifolds. Symbols can be defined as
functions on the cotangent space T*M.



Classical pseudodifferential operators

Let RY be the radial compactification of RY: we glue a ‘celestial
sphere’ S~ to RY at ‘infinity’ That is, for the function
p:RI\ {0} — R defined by p(x) = I;—l we are adding the zero

level-set to RY.
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Classical pseudodifferential operators

Let RY be the radial compactification of RY: we glue a ‘celestial
sphere’ S~ to RY at ‘infinity’ That is, for the function

p:RI\ {0} — R defined by p(x) = I;—l we are adding the zero
level-set to RY.

More rigorously:

RY = (Rd U (S x [o,1)p)>/~, RY 3 (6,r) ~ (6, p) if p= ;
Classical WDOs

For a € S°(R? x RY), we say that a is a classical symbol if a extends
to @ € C°(R? x RY). More generally, a € ST/(R? x R) if
a(x,€)(€)~" € C>(RY x RY).

The corresponding pseudodifferential operators are denoted by
WI(RY).



Classical pseudodifferential operators (l1)

By Taylor's theorem, the condition that a € C>°(RY x RY) is
equivalent to the existence of an asymptotic expansion

a(x, &) ~ Y a_p(x,6), a_r€STHRIxRY),
k=0

where each a_x(x, t€) = t=Fa_y(x,£) for |¢] > 1,t > 1.



Classical pseudodifferential operators (l1)

By Taylor's theorem, the condition that a € C>°(RY x RY) is
equivalent to the existence of an asymptotic expansion

£~ a_k(x€), a_peSTFRIxRY),
where each a_x(x, t€) = t=Fa_y(x,£) for |¢] > 1,t > 1.

Likewise, on manifolds we can radially compactify the fibres of T*M,
denoted by T*M. We say that a € S"(T*M) is a classical symbol if
a({&)~™m extends to C°(T*M).
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explicitly for R? given by RY x S9-".
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Principal symbols

For this compactification, we have a boundary
OT*M := T*M \ T*M ~ S*M,
explicitly for R? given by RY x S9-".
For a classical symbol a € S%(T*M), we call the restriction

apg:=a

sem € C°(S™M),

the principal part of a. It's not too surprising that this also arises as
la] € S2(T*M)/S™(T*M),

and that we have an exact sequence

0 — ST(T*M) — SY(T*M) — C>°(S*M) — 0.

NB: this story also works for different compactifications!



Sequined donut

The space S*M is a sphere bundle on M: at each point in M the fibre
is a sphere S?=". For a two-dimensional space, this looks like sequin
fabric.




Exact sequences

On the level of operators, the principal symbol of T € \USI(M),
denoted by ao(T), is the image of T in the quotient W% (M)/ W (M).
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Exact sequences

On the level of operators, the principal symbol of T € W (M),
denoted by ao(T), is the image of T in the quotient W% (M)/ W (M).

cl

In fact, we also have an exact sequence

0 — W '(M) — W (M) — C(S*M) — 0.



Quantisation revisited

For A, B € W9 (M), we now indeed have

1 oo(al) =, a € R;
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Quantisation revisited

For A, B € W9 (M), we now indeed have

1 oo(al) =, a € R;

2. For P a polynomial, we have that P(A) € W and
a0(P(A)) = P o ao(A) (can be improved to functions in S™(R));

3. Uo(A + B) = O’o(A) P O'Q(B);
4. o_1(i[A, B]) = {o0(A), 50(B)}.

Of course, other quantisations exist too.

1



Egorov’s Theorem

Egorov’s theorem

Let A € W] (M) with symbol a € S} (T*M) be a self-adjoint elliptic
classical WDO (elliptic meaning that o(A) is nowhere 0). Then for
B € WY(M), we have that e=™"Be™ € W (M) and

00 (eithBe’-tA) = 0¢(B) o ®y(1),

where ®4(t) is the flow of the Hamiltonian vector field generated by
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Egorov’s Theorem

Egorov’s theorem

Let A € W] (M) with symbol a € S} (T*M) be a self-adjoint elliptic
classical WDO (elliptic meaning that o(A) is nowhere 0). Then for
B € WY(M), we have that e=™"Be™ € W (M) and

00 (eithBe’-tA) = 0¢(B) o ®y(1),

where ®4(t) is the flow of the Hamiltonian vector field generated by
a, i.e.

d
gi|,_ o %0 = (a0

This theorem relates the time-evolution of Hamiltonian mechanics
to the time-evolution of the corresponding quantised observables.
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For a Riemannian manifold (M, g), we define the geodesic flow
Gi:SM — SM, teR,

in the usual way. By duality, we can likewise define G; : S*M — S*M,
where S*M C T*M.

The geodesic flow G; coincides with the flow with the Hamiltonian
vector field generated from /Ay restricted to S*M, where Ay is the
Laplace-Beltrami operator. Namely, the vector field { -, ||£]|} on T*M
is locally given by H%\I Z/‘ &0y Hence,

o_o(efit\/AigBeit\/Aig) = 00(B) o Gy.



A C*-algebraic approach

On a compact manifold M, we have that operators in W—'(M) extend
to compact operators on L,(M). In fact,

K(Lo(M)) N W (M) = W ' (M).

cl
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A C*-algebraic approach

On a compact manifold M, we have that operators in W—'(M) extend
to compact operators on L,(M). In fact,

K(Lo(M)) N W (M) = W ' (M).

cl

The exact sequence
0 — V(M) = W(M) — C=(5*M) — 0,

can be upgraded to an exact sequence of C*-algebras (this is not
immediate)

0 = K(Ly(M)) NWo(M)' " — WO (M) ' — C(S*M) — 0.
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A C*-algebraic approach

On a compact manifold M, we have that operators in W—'(M) extend
to compact operators on L,(M). In fact,

K(Lo(M)) N W (M) = W ' (M).

cl

The exact sequence
0 — V(M) = W(M) — C=(5*M) — 0,

can be upgraded to an exact sequence of C*-algebras (this is not
immediate)

0 — K(Ly(M)) N WO (M)~ — WO (M)~ — C(S*M) — 0.
Through Egorov's theorem and Stone-Weierstrass, it's not too
difficult to see that we also have

c* efit\/zcoo(/\/l)eit\/Z AL K(Lz(M)) K(LQ(M)) ~ C(S*M)
(Y /

teR 14



Noncommutative cosphere bundle

For a (compact) spectral triple (A, H, D), we define (Connes '96,
Golse-Leichtnam '98)

S*A:=C < | e7™PlAePl + K(?—[)) JK(H).

teR

This C*-algebra comes with automorphisms

oi(a+ K(H)) = e~ tPlge!lPl 4 K(#).



Noncommutative cosphere bundle

For a (compact) spectral triple (A, H, D), we define (Connes '96,
Golse-Leichtnam '98)

S*A:=C < | e7™PlAePl + K(?—[)) JK(H).

teR

This C*-algebra comes with automorphisms

oi(a+ K(H)) = e~ tPlge!lPl 4 K(#).

In the commutative case, we recover C(S*M) with its geodesic flow.
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Weyl's law gives for a compact Riemannian manifold (M, g),
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There exists a local version of Weyl's law, which gives for f € C°°(M),

N(A)

Tr(Mpxpo,a(A)) = Y (en, Mren) ~ Car* / fdvg, A — oo
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Microlocal Weyl law

Weyl's law gives for a compact Riemannian manifold (M, g),
Tr(xpa(A)) ~ Cavol(MAS, A — oo.

There exists a local version of Weyl's law, which gives for f € C°°(M),

N(A)

Tr(Mpxpo,a(A)) = Y (en, Mren) ~ Car* / fdvg, A — oo
n=0 A

Or, even, a microlocal Weyl law, which states for A € Wo(M),

N(A)

Tr(Ax,A (D)) = Z<e”’Ae”> ~ Cd)\g / oo(A)du, X\ — oco.
n=0 5 M

Connes exploited these laws to obtain an operator algebraic
approach to integration.

16



Dixmier traces

Let H be a Hilbert space. An eigenvalue sequence of a compact
operator A € K(H) is a sequence {A(R,A)}ren Of the eigenvalues of A
listed with multiplicity, such that {|\(R,A)|}ren IS non-increasing.

The usual operator trace Tr can be characterised for trace class
operators A € £1 C K(H) as

Tr(A) = nleoo z”: A(R,A).
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Dixmier traces

Let H be a Hilbert space. An eigenvalue sequence of a compact
operator A € K(H) is a sequence {A(R,A)}ren Of the eigenvalues of A
listed with multiplicity, such that {|\(R,A)|}ren IS non-increasing.

The usual operator trace Tr can be characterised for trace class
operators A € £1 C K(H) as

Tr(A) = nleoo z”: A(R,A).
k=

The Dixmier trace is defined on so-called weak trace class operators
A€ L1 CK(H) by

_ 1 -
Trw(A) = w-nlem m ; )\(I?,A),

where w € £ (N)* is an extended limit. Note that £4 C £; o, but if
A€ Ly, Tr,(A) = 0. .
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Connes’ Integral Formula
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Connes’ integral formula

Connes proved the following.

Connes’ Integral Formula

Let (M, g) be a compact Riemannian manifold, f € C2°(M). Then for
any Dixmier trace Tr,,

Tro,(Mi(1 — Ag)~%) = Cd/Mfdug.

Or stronger, for A € W% (M),

Tro(A(1 = Ag)~%) = G4 /*M oo(A) dp.

Connes' result is in fact even stronger, as he does not assume a
Riemannian structure.



Non-compact manifolds




The problem

Before thinking about non-compact spectral triples, we need to think
about non-compact manifolds. For simplicity | will now just consider
RY.
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The problem

Before thinking about non-compact spectral triples, we need to think
about non-compact manifolds. For simplicity | will now just consider
RY.

No longer is every operator of order —1 compact. A particularly bad
example on R? is

g(V) e W"=(RY), ge C®(RY).

In particular, not every operator in \U;d(/\/l) 1SN L1,00 € K(H) either.

While C>°(S*M) ~ WY (M)/W=Y(M), it is therefore no longer true that

C(s* My = W) /K(Lo(M).
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Scattering Calculus

Definition (Scattering WDOs on RY)
We say that a € ST!(RY x RY), m, [ € R, if a € C°(RY x RY) and

10082 a(x, €)| < Aag(X)T1PlE)™1el o, B € N, x, € € R

Recall that (&) := (1+ |€*)"/2.

We define WT(RY) accordingly. Note that WI°(RY) C w™(RY).
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Scattering Calculus

Definition (Scattering WDOs on RY)
We say that a € ST!(RY x RY), m, [ € R, if a € C°(RY x RY) and

167 0g a(x, )] < Aap() 1)1, o, 8 € N,x,£ € RY.
Recall that (&) := (1+ |€*)"/2.
We define WT(RY) accordingly. Note that WI°(RY) C w™(RY).

Amazingly, WT'(RY) C K(H) if both m, [ < 0.

20



Classical scattering WDOs

Again we can take a shortcut to define classical scattering
pseudodifferential operators.
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Classical scattering WDOs

Again we can take a shortcut to define classical scattering
pseudodifferential operators.

Definition (classical scattering WDOs on RY)

Let RY be the radial compactification of RY.

We define S™L (RY x RY) C ST/(R? x RY) as those a for which
a(x, €)(x)~(¢)~9 extends to a smooth function C*°(RJ x RY).
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Classical scattering VDOs

Again we can take a shortcut to define classical scattering
pseudodifferential operators.

Definition (classical scattering WDOs on RY)

Let RY be the radial compactification of RY.

We define S™L (RY x RY) C ST/(R? x RY) as those a for which
a(x, £)(x)~1(¢)~9 extends to a smooth function C>°(R9 x RY).

Accordingly, we define w™! (RY) € w™!(RY).

sc,cl
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Classical scattering VDOs

Again we can take a shortcut to define classical scattering
pseudodifferential operators.

Definition (classical scattering WDOs on RY)

Let RY be the radial compactification of RY.

We define S™L (RY x RY) C ST/(R? x RY) as those a for which
a(x, £)(x)~1(¢)~9 extends to a smooth function C>°(R9 x RY).

Accordingly, we define w™! (RY) € w™!(RY).

sc,cl

Note that by Taylor’s theorem, this is equivalent to a(x, &) admitting
asymptotic expansions of the right kind as x — oo, as £ — oo, and as
both x, & — .

21



Scattering cotangent bundle

We write SCT*RY := Rd x R for the (compactified) scattering
cotangent bundle on RY. This is a compact manifold with corners,
consisting of strata

scT*RA = (RY x RY) U (S977 x RY) L (RY x S977) L (S9" x §9-T)

RdXSdW SHWXSGW

RY x R? ST x RY

22



Scattering cosphere bundle

Now the principal symbol lives on 95¢T*R9, which consists of the
strata

3(5CT*Rd) ~ (Rd % Sd—1) L (Sd—1 « Rd) L] (Sd—1 « Sd—w)_
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Scattering cosphere bundle

Now the principal symbol lives on 95¢T*R9, which consists of the
strata

3(5CT*Rd) ~ (Rd % Sd—1) L (Sd—1 « Rd) L] (Sd—1 « Sd—w)_

For A € WML (RY), the equivalence class [A] € W™{(RY)/wm=T1=)(RY)
corresponds in a natural way to a smooth function in C>°(95¢T*RY).

23



The C*-algebraic principal symbol

Since operators in W~ ¢ are compact in the scattering calculus, we
obtain the following.

Lauter-Moroianu (2001)
We have an exact sequence of C*-algebras

— 1l
0,0
0— wsc,cl

—55 I —
NK(L(RY)) — w20 " — C(85T*RY) — 0.

sc,cl

24



d —d,—o0 (mpd
: eV T (RY), we have

For f € C°(RY), we have Mg(1+ A)~
M¢(1+ A)‘g € L1,00, and

d AY¢) d—1
Tr,(Mf(1+A)"%) = d(lzi)d /Rd f(x) dx.
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d —d,—o0 (mpyd
: eV T (RY), we have

For f € C°(RY), we have Mg(1+ A)~
M¢(1+ A)‘g € L1 o, and

d AY¢) d—1
Tr,(Mf(1+A)"%) = d(lzi)d /Rd f(x) dx.

Note that the (—d, —d)-principal symbol of Ms(1+ A)~% is a function
on
(RY x ST7N L (897" x RY) L (897" x s977),

and in this case it is
fx)uouo.

The formula above is the integral of this!

25



Examples (I1)

d
2

For the Fourier transform of M«(1+ A)~2, which is f{V)M,y-q, we
likewise have f(V)M s € W22~ %(R), and

sc,cl

vol §4-1

T (VM) = G [ T
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Examples (I1)

d
2

For the Fourier transform of M«(1+ A)~2, which is f{V)M,y-q, we
likewise have f(V)M s € W22~ %(R), and

sc,cl
v Sd—W
T (VM) = G [ T

In this case, the principal symbol is

Ouf(e) uo.

Again, we obtain the integral of this.

26



One might think that \Us’cdc*,’d(]Rd) C L1 o, but this is not true:

_ _d
M (14 8)7% ¢ L1 oo
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One might think that \Us’cd&’d(Rd) C L1 o, but this is not true:

— _d
M (14 8)7% ¢ L1 oo

Theorem (Nicola 2003)
Let P € W_%~9"Y(RY). Then P € £, , and

sc,cl
1 —d,—d
Tr,(P) = ——— ~9(P) dp.
)= G o O

IfPe \Us’cdcf”d(]Rd), the same formula holds with integral over
SI-1 x R,

If P e W_%79(RY), then

SC,Cl
1 N
lim —————— A(n,P):/ o 7Y(P) dp.
N—oo (|Og(N+2))2 ﬂz:% Sd—1x§d—1 ¢ 27



Theorem (H.~Levitina—McDonald-Sukochev-Zanin, WIP)

Let P e W % "9(RY). Then P € £, if and only if
Us_cd’_d(P) € L1(dTzR9), in which case

— L —d,—d
Tr,(P) = d@n)? /BTS*C]Rd osc(P)du.

This is a variant on known spectral asymptotics by Battisti-Coriasco
(201M).
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Theorem (H.~Levitina—McDonald-Sukochev-Zanin, WIP)

Let P € W_%~9(RY). Then P € £ o if and only if

sc,cl
o5 79(P) € L4(8T:.RY), in which case

— L —d,—d
Tr,(P) = d@n)? /BTS*C]Rd osc(P)du.

This is a variant on known spectral asymptotics by Battisti-Coriasco
(201M).

Note: iIf P € L4,5 N \Us’c‘i’fd(Rd), then its principal symbol is zero at
the corner S9=1 x S, The relevant part of the measure du here is

the Lebesgue measure on RY x $9-1 11§91 x RY,

28



Scattering cotangent bundle

Moving to more general non-compact manifolds, we can mimic the
construction of scT*RY = RY x RY. Recall that we defined R? via a
boundary defining function p(x) = .
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Scattering cotangent bundle

Moving to more general non-compact manifolds, we can mimic the

construction of scT*Rd = RY x R, Recall that we defined R via a

boundary defining function p(x) = ﬁ

Take now a compact manifold M with boundary, and consider a
boundary defining function p such that p > 0 on the interior M°, and
dp # 0 at OM.
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Scattering cotangent bundle

Moving to more general non-compact manifolds, we can mimic the
construction of scT*RY = RY x RY. Recall that we defined R? via a

boundary defining function p(x) = ﬁ

Take now a compact manifold M with boundary, and consider a
boundary defining function p such that p > 0 on the interior M°, and
dp # 0 at OM.

Scattering (co)tangent bundle
Let (y1,...,¥n) be a local coordinate system of OM near p € OM.

Then (p, Y1, ..., pn) forms a coordinate system of M near p. Let
Vsc(M) be the vector fields that are at every p € OM the C°°(M)-span
of

X2y, X0y, . . ., X0y, .

This defines a vector bundle ¢TM, and a dual ¢ T*M.

29



Melrose square

The vector bundle *¢T*M has fibres R”, which can be radially
compactified. This results in a compact space S¢T*M, which looks like

SCS* e SCSBMM

SCT*Mo SCT?)MM

30



Quantum Ergodicity




Quantum Ergodicity

A one-particle system described by an operator H on L,(M) is called
quantum ergodic if the high energy states of H are ‘smeared’ over M.
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Quantum Ergodicity

A one-particle system described by an operator H on L,(M) is called
quantum ergodic if the high energy states of H are ‘smeared’ over M.

Quantum Ergodicity

A positive self-adjoint operator A on L,(M) with compact resolvent,
where M is a compact Riemannian manifold, is said to be quantum
ergodic if for every orthonormal basis {e,}°, of L,(M) consisting
of eigenfunctions of A, there exists a density one subsequence

J € N such that

o
l - - — d v (M
(6, 0p(0)8)u00 — gy L. 9 Op(a) € VE(M),

where v is a probability measure on S*M. In this context, a density
one subsequence means that

#(NA{0,...,n})
n+1

-1, n— oo.
3
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Figure 1: Eigenfunctions of the Figure 2: Eigenfunctions of the
Laplacian on a rose-shaped domain, Laplacian on the disc, not quantum
quantum ergodicity unknown. ergodic.



Pictures

N02~ o
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Figure 3: Typical eigenfunction of the Laplacian on a stadium, proven to be
quantum ergodic! Credit of the picture to Douglas Stone.
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Fundamental theorem of QE

The fundamental theorem that started the field of Quantum
Ergodicity is the following.

Theorem (Shnirelman 1974, Zelditch 1987, Colin de Verdiére 1985)

Let M be a compact Riemannian manifold. If the geodesic flow on M

is ergodic, then the Laplace-Beltrami operator Ag is quantum
ergodic.
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Fundamental theorem of QE

The fundamental theorem that started the field of Quantum
Ergodicity is the following.

Theorem (Shnirelman 1974, Zelditch 1987, Colin de Verdiére 1985)

Let M be a compact Riemannian manifold. If the geodesic flow on M

is ergodic, then the Laplace-Beltrami operator Ag is quantum
ergodic.

By now, various extensions of this theorem exist. The common

thread is to study geodesic flow, and translate this into asymptotic
behaviour of eigenfunctions of an operator.
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QE as a Weyl law

We can interpret Quantum Ergodicity as a stronger microlocal Weyl
law. Namely, the QE property

. 1
|_|m <ej, Aej>L2(M) —

— A)d A e vo(M
J3j—00 vol(S*M) _/S*MJO( ) di, € VM),

is equivalent by the Koopman-von Neumann lemma to

1 N
li -

1 o _ 0
M)./S*M O(A)du‘ 0, AeWwo(m).
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QE as a Weyl law

We can interpret Quantum Ergodicity as a stronger microlocal Weyl
law. Namely, the QE property

. 1
|_|m <ej, Aej>L2(M) —

— A)d A e vo(M
J3j—00 vol(S*M) _/S*MUO() - € VM),

is equivalent by the Koopman-von Neumann lemma to

1 N
li -

1 o _ 0
M)./S*M O(A)du‘ 0, AeWwo(m).

This is now recognisable as a stronger version of the microlocal Weyl
law

N
m L3 1 - .
N|L>moo m <en,Aen> - m ‘/S*M UO(A) d/,L = O, Aev (M)

n=0

35



Comparison

Now compare the microlocal Weyl law
TI‘(P/\AP)\) A—o00 1 /
A
Tr(Py) oIS M) Js.,, 7O b
with Connes’ formula

Tro(A(1 = A)9) = G, /S*M oo(A) dp.
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Comparison

Now compare the microlocal Weyl law
TI‘(P/\AP)\) A—o00 1 /
A
Tr(Py) oIS M) Js.,, 7O b
with Connes’ formula

Tro(A(1 = A)9) = G, /S*M oo(A) dp.

H.-McDonald

Let H be a separable Hilbert space, A € B(H), D self-adjoint with
compact resolvent, Py := x[—x, (D). If D satisfies Weyl's law
A(k, |D|) ~ Cka, then for all Dixmier traces Tr,,

Tr (A + D)%) . (Tr(Px,APs,)
Tro((14D2)~%) M< Tr(P,) )

Here, M : /o, — £+ is the logarithmc averaging defined by
M) = m > k=0 *- 36



Truncated Spectral Triples

If we have a spectral triple (A, H, D), lots of noncommutative
geometers are interested in truncated triples (PxAPx, PxH, P,D) (e.g.
Connes-van Suijlekom, D’Andrea-Lizzi-Martinetti).
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Truncated Spectral Triples

If we have a spectral triple (A, H, D), lots of noncommutative
geometers are interested in truncated triples (PxAPx, PxH, P,D) (e.g.
Connes-van Suijlekom, D’Andrea-Lizzi-Martinetti).

Our result shows that if (A, H, D) is d-dimensional and D satisfies

Weyl's law, then
TI‘(P,\AP/\)

TI’(P)\)
is a reasonable approximation of the noncommutative integral
Tr,(A(1 + D?)~%).

P)\AP,\ =
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NCG ergodicity

Since ergodicity of the geodesic flow is a measure theoretic
statement, we need to take one more step.
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NCG ergodicity

Since ergodicity of the geodesic flow is a measure theoretic
statement, we need to take one more step.

L,-cosphere bundle
Let (A, H, D) be a regular spectral triple where D satisfies Weyl's

law. Then
 Tr,(A(1+ D)%)
Tr,,((1+ D?)~%)

(A + K(H)) . A+K(H) e S*A,

defines a finite positive trace on S*A. Then define [,(S*.A) as the
Hilbert space of the GNS representation of S* A corresponding to 7.

The geodesic flow o on S* A descends to a unitary operator on
L,(S*A).
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NCG QE

We can now naively put forward a definition of ergodic geodesic flow
for spectral triples. Namely, we say that the geodesic flow oy is

ergodic on (A, H, D) if the only o¢-invariant element of L,(S*A) is the
identity.

39



We can now naively put forward a definition of ergodic geodesic flow
for spectral triples. Namely, we say that the geodesic flow oy is
ergodic on (A, H, D) if the only o¢-invariant element of L,(S*A) is the
identity.

NCG QE (H.-McDonald)

Let (A, #H, D) be a d-summable regular spectral triple where D
satisfies Weyl's law, and with local Weyl laws. If the geodesic flow
on (A, H,D) is ergodic, then D is quantum ergodic. That is, for every
basis {en}p2, of H consisting of eigenvectors of D, there exists a
density one subset / C N such that

lim (e;, aej) = Tru(001+ 0%

, —, a€A
J3j—00 Tr,((1+ D?)"2)
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Thanks for listening!
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