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Introduction

Summary of this talk

1 Noncommutative geometry and Connes’ trace theorem

2 Pseudodifferential operators and Connes’ trace theorem (again)

3 Scattering calculus and Connes’ trace theorem (again again)

This talk is based on joint work with Galina Levitina (ANU), Ed McDonald (Penn
State), Fedor Sukochev (UNSW), and Dmitriy Zanin (UNSW).
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Connes’ trace theorem

Part 1: Connes’ Trace Theorem
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Connes’ trace theorem

Spectral geometry

Can one hear the shape of a drum?

Figure: Mark Kac, Center for Nonlinear Studies.

E.-M. Hekkelman (UNSW) The sound of the scattering cosphere bundle August 14 2025 4 / 32



Connes’ trace theorem

Hearing the shape of a drum

The sounds a (Riemannian, compact, orientable) manifold (X , g) produces if it
were a drum, correspond to the eigenvalues of the Laplace–Beltrami operator ∆g ,
the manifold equivalent of the differential operator −

∑n
j=1 ∂

2
xj .

In other words, they correspond to those λ ∈ C for which the PDE{
∆u = λu on X ;

u|∂X = 0

has a solution (Helmholtz equation).

The question asks whether we can reconstruct our Riemannian manifold X from
the data (L2(X ),∆g ), in particular, from these eigenvalues of the operator ∆g

(this is called spectral geometry).
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Connes’ trace theorem

What we can hear

Weyl’s law (Weyl 1910s, Duistermaat–Guillemin 1975, Ivrii 1980)

Let (X , g) be a compact Riemannian manifold of dimension d satisfying some
weak assumptions. Let N(t) be the number of eigenvalues (counting
multiplicities) of ∆g with absolute value less than t. Then as t → ∞,

N(t) =
ωd

(2π)d
Vol(X )t

d
2 − ωd−1

4(2π)d−1
Area(∂X )t

d−1
2 + o(t

d−1
2 ).
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Connes’ trace theorem

What we can hear 2

Heat trace expansion (Minakshisundaram–Pleijel 1949)

We have

Tr(exp(t∆g )) ∼
∞∑
k=0

ak(∆g )t
k−d
2 , t → 0,

the first coefficients of which can be given as

a0(∆g ) = (4π)−
d
2 Vol(X );

a2(∆g ) = −1

6
(4π)−

d
2

ˆ
X

R dvolg ,

where R is the scalar curvature of X . The coefficients ak(∆g ) vanish for odd k,
and the higher coeffients ak(∆g ) are integrals over X of (complicated) expressions
involving the metric of X .
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Connes’ trace theorem

What we cannot hear

Figure: Isospectral drums.
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Connes’ trace theorem

Gelfand duality

The Laplace–Beltrami operator ∆g tells us a lot about the geometry on X , but
does not allow us to reconstruct X as a geometric space.

Gelfand duality (1940s)

There is an equivalence of categories between compact Hausdorff spaces and
unital commutative C∗-algebra A, via X ↔ C (X ), continuous complex-valued
functions on X .

Where ∆g is an operator on L2(X ), the space C (X ) can also be represented on
L2(X ) via (pointwise) multiplication operators,

Mf : L2(X ) → L2(X ), f ∈ C (X ),

g 7→ fg .
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Connes’ trace theorem

A spectral invariant

The data (C (X ), L2(X ),∆g ) is an invariant for X .

Theorem (follows from Arendt–Biegert–ter Elst 2012)

Let (M1, g1) and (M2, g2) be connected compact Riemannian manifolds, with
corresponding Laplace–Beltrami operators ∆1 and ∆2. Then the following are
equivalent:

1 the Riemannian manifolds (M1, g1) and (M2, g2) are isometric;

2 there exists a unital ∗-isomorphism ψ : C (M1)
∼−→ C (M2) and a unitary

operator U : L2(M1) → L2(M2) such that

UMf = Mψ(f )U, f ∈ C (M1)

U∆1 = ∆2U.
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Connes’ trace theorem

Reconstruction theorem

We can do even better if we replace C (M) by C∞(M), and replace ∆g by its
square root DS , a Dirac operator.

Connes’ reconstruction theorem (2013)

Let (A,H,D) be such that:

1 H is a Hilbert space;

2 A is a commutative ∗-algebra represented as bounded operators on H;

3 D is a self-adjoint operator on H with compact resolvent;

4 [D, a] extends to a bounded operator for all a ∈ A;

5 some more technical assumptions.

Then we can construct S → X such that (A,H,D) ≃ (C∞(X ), L2(X ,S),DS),
where DS is the Dirac operator on the spinor bundle S → X .
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Connes’ trace theorem

Connes’ integration formula

This characterisation of (spin) manifolds suggests that it should be possible to do
geometry using just the multiplication operators Mf and the Laplace operator ∆g

(or the Dirac operator DS).

Connes’ trace theorem (1988), version 1

Let (X , g) be a d-dimensional compact Riemannian manifold. Then

lim
N→∞

1

log(2 + N)

N∑
n=0

λ(n,Mf (1 + ∆g )
− d

2 ) = Cd

ˆ
X

f dvolg , f ∈ C∞(X ).

This is like a Weyl law. For the spectral counting function of Mf (1 + ∆g )
− d

2 , the
statement is equivalent to

N(λ) = Cd

ˆ
X

f dvolg ·λ+ o(λ).
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Connes’ trace theorem

Technical stuff

Let H be a Hilbert space. An eigenvalue sequence of a compact operator
A ∈ B(H) is a sequence {λ(k ,A)}k∈N of the eigenvalues of A listed with
multiplicity, such that {|λ(k ,A)|}k∈N is non-increasing.

The usual operator trace Tr can be characterised for trace class operators
A ∈ L1 ⊆ B(H) as

Tr(A) = lim
n→∞

n∑
k=1

λ(k ,A).

The weak trace class L1,∞ ⊆ B(H) is defined as those compact A for which
λ(k, |A|) = O(k−1).

The Dixmier trace is defined on L1,∞ by

Trω(A) = ω- lim
n→∞

1

log(2 + n)

n∑
k=1

λ(k,A), A ∈ L1,∞,

where ω ∈ ℓ∞(N)∗ is an extended limit. Note that L1 ⊂ L1,∞, but if A ∈ L1,
Trω(A) = 0.
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Connes’ trace theorem

Connes’ integration formula revisited

Connes’ trace theorem (1988), version 2

Let (X , g) be a d-dimensional compact Riemannian manifold. Then for any

smooth function f , have Mf (1−∆g )
− d

2 ∈ L1,∞, and for any extended limit
ω ∈ (ℓ∞)∗,

Trω(Mf (1−∆g )
− d

2 ) = Cd

ˆ
X

f dvolg , f ∈ C∞(X ).

This version is of deep philosophical importance to Noncommutative Geometry. In
NCG, we study triples (A,H,D) as we have seen before, but where A is
noncommutative. There,

a 7→ Trω(a(1 + D2)−
d
2 ), a ∈ A,

is taken as the definition of the ‘noncommutative integral’.
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PsDOs

Part 2: Pseudodifferential Operators and Connes’ Trace Theorem (again)
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PsDOs

PDEs

Suppose we want to solve the PDE (on R2)

∂2u

∂x2
+ 3

∂2u

∂y2
+

∂2u

∂x∂y
+
∂u

∂x
− 2

∂u

∂y
− u = f ,

for some nice function f .

After taking a Fourier transform, we have

pL(ξ1, ξ2)û(ξ1, ξ2) = f̂ (ξ1, ξ2).
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pL(ξ1, ξ2)û(ξ1, ξ2) = f̂ (ξ1, ξ2).

E.-M. Hekkelman (UNSW) The sound of the scattering cosphere bundle August 14 2025 16 / 32



PsDOs

PDEs

Suppose we want to solve the PDE (on R2)

∂2u

∂x2
+ 3

∂2u

∂y2
+

∂2u

∂x∂y
+
∂u

∂x
− 2

∂u

∂y
− u = f ,

for some nice function f .
After taking a Fourier transform, we have
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û(ξ1, ξ2) =
1

pL(ξ1, ξ2)
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haha

E.-M. Hekkelman (UNSW) The sound of the scattering cosphere bundle August 14 2025 16 / 32



PsDOs

PDEs

Suppose we want to solve the PDE (on R2)

∂2u

∂x2
+ 3

∂2u

∂y2
+

∂2u

∂x∂y
+
∂u

∂x
− 2

∂u

∂y
− u = f ,

for some nice function f .
After taking a Fourier transform, we have

pL(ξ1, ξ2)û(ξ1, ξ2) = f̂ (ξ1, ξ2).

Since pL(ξ1, ξ2) ̸= 0,

u(x , y) = F−1

(
1

pL(ξ1, ξ2)
f̂ (ξ1, ξ2)

)
(x , y),

solved!
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PsDOs

Observations

For a linear differential operator L =
∑

|α|≤k aα∂
α on Rd , we can write

L = F−1 ◦MpL ◦ F where MpL indicates multiplying with the polynomial
pL(ξ) :=

∑
|α|≤k aα(2πiξ)

α. This polynomial is called the symbol of L.

Lu(x) =

ˆ
Rd

e2πix·ξpL(ξ)û(ξ)dξ.

If pL is invertible, we have

L−1u(x) =

ˆ
Rd

e2πix·ξ
1

pL(ξ)
û(ξ)dξ.
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PsDOs

Generalising

Further, if L =
∑

|α|≤k aα(x)∂
α, we write pL(x , ξ) :=

∑
|α|≤k aα(x)(2πiξ)

α,
and

Lu(x) =

ˆ
Rd

e2πix·ξpL(x , ξ)û(ξ)dξ.

Even in this case, if p(x , ξ) ̸= 0,

u 7→
ˆ
Rd

e2πix·ξ
1

pL(x , ξ)
û(ξ)dξ

is often a pretty good guess for the inverse of L.
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PsDOs

PsDOs

Definition (Pseudodifferential operators on Rd)

We say that a ∈ Sm(Rd × Rd), m ∈ R, if a ∈ C∞(Rd × Rd) and if

|∂βx ∂αξ a(x , ξ)| ≤ Aαβ⟨ξ⟩m−|α|, α, β ∈ N, x , ξ ∈ Rd ,

here ⟨ξ⟩ := (1 + |ξ|2)1/2. We define the operator Ta : S(Rd) → S(Rd)

Taf (x) :=

ˆ
Rd

e2πix·ξa(x , ξ)f̂ (ξ)dξ, f ∈ S(Rd).

The class of operators Ta is denoted Ψm(Rd).
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PsDOs

Principal part of differential operator

A lot of important properties of a differential operator L =
∑

|α|≤k aα(x)∂
α

depend on its principal part
∑

|α|=k aα(x)∂
α.

To mimic this for PsDOs, note that we can ‘see’ the principal part of L in its
symbol pL by observing that

pL(x , tξ) =
∑
|α|≤k

t |α|aα(x)ξ
α, t > 0.

The principal part is the part of pL that scales as tk .
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PsDOs

Classical PsDOs

We therefore define classical pseudodifferential operators as follows.

Definition (classical PsDOs on Rd)

We define Sm
cl (Rd × Rd) ⊆ Sm(Rd × Rd) as those a for which

a(x , ξ) ∼
∞∑
k=0

am−k(x , ξ),

where am−k ∈ Sm−k(Rd × Rd) and

am−k(x , tξ) = tm−kam−k(x , ξ), t ≥ 1, |ξ| ≥ 1.

Accordingly, we define Ψm
cl (Rd) ⊆ Ψm(Rd).

For A ∈ Ψm
cl (Rd), the equivalence class [A] ∈ Ψm(Rd)/Ψm−1(Rd) corresponds in a

natural way to the highest term in the expansion, which can be identified with a
function on Rd × Sd−1. This is called the principal symbol.
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function on Rd × Sd−1. This is called the principal symbol.
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PsDOs

Connes trace theorem again

The construction of pseudodifferential operators so far can be performed on
compact manifolds (without Riemannian structure!). The principal symbol is then
a function on S∗X , the cosphere bundle, which locally looks like U × Sd−1, for
U ⊆ X .

Connes’ trace theorem (1988), version 3

Let X be a compact manifold, and let P ∈ Ψ−d
cl (X ). Then P ∈ L1,∞, and for any

extended limit ω ∈ (ℓ∞)∗,

Trω(P) =
1

d(2πd)

ˆ
S∗X

σ−d(P) dµ.

Here, σ−d(P) is the part of the symbol of P that is −d-homogeneous, i.e. the
principal symbol of P.

For the connoisseurs: the right hand side is the Wodzicki residue.
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Scattering calculus

Part 3: Scattering Calculus and Connes’ Trace Theorem (again again)
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Scattering calculus

Connes trace theorem on Euclidean space

For Rd , we get the following version for free.

Connes’ trace theorem (1988), version 3b

Let P ∈ Ψ−d
cl (Rd), such that its symbol is compactly supported in the first

variable. Then for any extended limit ω ∈ (ℓ∞)∗,

Trω(P) =
1

d(2πd)

ˆ
Rd×Sd−1

σ−d(P)(x , ξ) dxdξ.

Here, σ−d(P) is the part of the symbol of P that is −d-homogeneous, i.e. the
principal symbol of P.
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Scattering calculus

A Problem

This version of Connes’ Trace Theorem cannot hold for all Ψ−d
cl (Rd). For

g ∈ C∞
c (Rd), define

P := g(∇)M⟨x⟩−d .

We have that P ∈ Ψ−∞
cl (Rd) ⊆ Ψ−d

cl (Rd), where σ−d(P) = 0.

However, Fx ◦ P ◦ F−1
x = Mg (1 + ∆)−

d
2 ∈ Ψ−d

cl (Rd) with symbol compactly
supported in the first variable, and

Trω(P) = Trω(Fx ◦ P ◦ F−1
x ) =

volSd−1

d(2π)d

ˆ
Rd

g(x) dx .

Whereas on compact manifolds we have that Ψ−d−1(X ) ⊆ L1 ⊆ ker(Trω), for
non-compact spaces there can be non-trivial contributions solely from the spatial
asymptotics of the symbol of the operator.
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Scattering calculus

Scattering Calculus

Definition (Scattering pseudodifferential calculus on Rd)

We say that a ∈ Sm,l
sc (Rd × Rd), m, l ∈ R, if a ∈ C∞(Rd × Rd) and

|∂βx ∂αξ a(x , ξ)| ≤ Aαβ⟨x⟩l−|β|⟨ξ⟩m−|α|, α, β ∈ N, x , ξ ∈ Rd .

Recall that ⟨ξ⟩ := (1 + |ξ|2)1/2.

We define Ψm,l
sc (Rd) accordingly.
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Scattering calculus

Classical PsDOs

We can take a shortcut to define classical scattering pseudodifferential operators
as follows.

Definition (classical scattering PsDOs on Rd)

Let Rd be the radial compactification of Rd .

We define Sm,l
sc,cl(Rd × Rd) ⊆ Sm,l

sc (Rd × Rd) as those a for which

a(x , ξ)⟨x⟩−l⟨ξ⟩−d extends to a smooth function C∞(Rd × Rd).

Accordingly, we define Ψm,l
sc,cl(Rd) ⊆ Ψm,l

sc (Rd).

Note that by Taylor’s theorem, this is equivalent to a(x , ξ) admitting asymptotic
expansions of the right kind as x → ∞, as ξ → ∞, and as both x , ξ → ∞.
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Scattering calculus

Scattering cosphere bundle

Whereas on Rd we have Ψm
cl (Rd)/Ψm−1(Rd) ≃ C∞(Rd × Sd−1) (also known as

C∞(S∗Rd)), for the scattering calculus the principal symbol is more complicated.

For A ∈ Ψm,l
sc,cl(Rd), the equivalence class [A] ∈ Ψm,l(Rd)/Ψm−1,l−1(Rd)

corresponds in a natural way to a smooth function in C∞(∂T ∗Rd), where

∂T ∗Rd := (Rd ×Rd) \ (Rd ×Rd) ≃ (Rd × Sd−1)⊔ (Sd−1 × Sd−1)⊔ (Sd−1 ×Rd).

Rd × Rd

Rd × Sd−1

Sd−1 × Rd

Sd−1 × Sd−1
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Scattering calculus

Examples

For f ∈ C∞
c (Rd), we have Mf (1 + ∆)−

d
2 ∈ Ψ−d,−∞

sc,cl (Rd), we have

Mf (1 + ∆)−
d
2 ∈ L1,∞, and

Trω(Mf (1 + ∆)−
d
2 ) =

1

d(2π)d

ˆ
∂T∗Rd

σ−d,−d
sc (Mf (1 + ∆)−

d
2 ) dµ(

=
volSd−1

d(2π)d

ˆ
Rd

f (x) dx

)
.

Now for the Fourier transform f (∇)M⟨x⟩−d , we have f (∇)M⟨x⟩−d ∈ Ψ−∞,−d
sc,cl (Rd),

and

Trω(f (∇)M⟨x⟩−d ) =
1

d(2π)d

ˆ
∂T∗Rd

σ−d,−d
sc (f (∇)M⟨x⟩−d ) dµ.
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Scattering calculus

Known result

One might think that Ψ−d,−d
sc,cl (Rd) ⊆ L1,∞, but this is not true:

M−d
⟨x⟩ (1 + ∆)−

d
2 ̸∈ L1,∞.

Theorem (Nicola 2003)

Let P ∈ Ψ−d,−d−1
sc,cl (Rd). Then P ∈ L1,∞, and

Trω(P) =
1

d(2π)d

ˆ
Rd×Sd−1

σ−d,−d
sc (P) dµ.

If P ∈ Ψ−d−1,−d
sc,cl (Rd), the same formula holds with integral over Sd−1 × Rd .

If P ∈ Ψ−d,−d
sc,cl (Rd), then

lim
N→∞

1(
log(N + 2)

)2 N∑
n=0

λ(n,P) =

ˆ
Sd−1×Sd−1

σ−d,−d
sc (P) dµ.
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Scattering calculus

New result

Theorem (H.–Levitina–McDonald–Sukochev–Zanin, WIP)

Let P ∈ Ψ−d,−d
sc,cl (Rd). Then P ∈ L1,∞ if and only if σ−d,−d

sc (P) ∈ L1(∂T ∗Rd), in
which case

Trω(P) =
1

d(2π)d

ˆ
∂T∗Rd

σ−d,−d
sc (P) dµ.

Next step: scattering metrics?

Note: if P ∈ L1,∞ ∩Ψ−d,−d
sc,cl (Rd), then its principal symbol is zero at the corner

Sd−1 × Sd−1. The relevant part of the measure dµ here is the Lebesgue measure
on Rd × Sd−1 ⊔ Sd−1 × Rd .
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Scattering calculus

Thanks

Thanks for the invite!
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