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Summary of this talk

@ Noncommutative geometry and Connes’ trace theorem
@ Pseudodifferential operators and Connes' trace theorem (again)
@ Scattering calculus and Connes’ trace theorem (again again)

This talk is based on joint work with Galina Levitina (ANU), Ed McDonald (Penn
State), Fedor Sukochev (UNSW), and Dmitriy Zanin (UNSW).
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Connes’ trace theorem

Part 1: Connes’ Trace Theorem
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Spectral geometry

Can one hear the shape of a drum?

Figure: Mark Kac, Center for Nonlinear Studies.
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Hearing the shape of a drum

The sounds a (Riemannian, compact, orientable) manifold (X, g) produces if it
were a drum, correspond to the eigenvalues of the Laplace—Beltrami operator Ag,
the manifold equivalent of the differential operator — 2}1:1 8%_.
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Hearing the shape of a drum

The sounds a (Riemannian, compact, orientable) manifold (X, g) produces if it
were a drum, correspond to the eigenvalues of the Laplace—Beltrami operator Ag,
the manifold equivalent of the differential operator — 2}1:1 8%_.

In other words, they correspond to those A € C for which the PDE

Au =Xu onlX;
u|ax ZO

has a solution (Helmholtz equation).
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Hearing the shape of a drum

The sounds a (Riemannian, compact, orientable) manifold (X, g) produces if it
were a drum, correspond to the eigenvalues of the Laplace—Beltrami operator Ag,
the manifold equivalent of the differential operator — 2}1:1 8%_.

In other words, they correspond to those A € C for which the PDE

Au =Xu onlX;
u|ax =0

has a solution (Helmholtz equation).
The question asks whether we can reconstruct our Riemannian manifold X from

the data (L2(X),Ag), in particular, from these eigenvalues of the operator A,
(this is called spectral geometry).
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Connes’ trace theorem

What we can hear

Weyl's law (Weyl 1910s, Duistermaat—Guillemin 1975, Ivrii 1980)

Let (X, g) be a compact Riemannian manifold of dimension d satisfying some
weak assumptions. Let N(t) be the number of eigenvalues (counting
multiplicities) of A, with absolute value less than t. Then as t — oo,

Wy d Wd—1 d—1 d—1
N(t) = Vol(X)t? — ————— Area(0X)t 2 t 2 ).
(1) = s VOIX)EE — gty Area(@X)ts" 4 o(t'S)
v
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Connes’ trace theorem

What we can hear 2

Heat trace expansion (Minakshisundaram—Pleijel 1949)
We have
Tr(exp(tAg) Zak(Ag)t 2, t—0,
k=0
the first coefficients of which can be given as

ao(Ag) = (47) 7% Vol(X);
1
(D) = —7(471')7%/ R dvol,,
6 x
where R is the scalar curvature of X. The coefficients ax(Ag) vanish for odd k,

and the higher coeffients a,(Ag) are integrals over X of (complicated) expressions
involving the metric of X.

v
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What we cannot hear

0 1 2 3 0 1 2 3

Figure: Isospectral drums.
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Gelfand duality

The Laplace—Beltrami operator A, tells us a lot about the geometry on X, but
does not allow us to reconstruct X as a geometric space.
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Gelfand duality

The Laplace—Beltrami operator A, tells us a lot about the geometry on X, but
does not allow us to reconstruct X as a geometric space.

Gelfand duality (1940s)

There is an equivalence of categories between compact Hausdorff spaces and

unital commutative C*-algebra A, via X +» C(X), continuous complex-valued
functions on X.

E.-M. Hekkelman (UNSW) The sound of the scattering cosphere bundle August 14 2025 9/32



Gelfand duality

The Laplace—Beltrami operator A, tells us a lot about the geometry on X, but
does not allow us to reconstruct X as a geometric space.

Gelfand duality (1940s)

There is an equivalence of categories between compact Hausdorff spaces and
unital commutative C*-algebra A, via X +» C(X), continuous complex-valued
functions on X.

Where A, is an operator on L(X), the space C(X) can also be represented on
Lo(X) via (pointwise) multiplication operators,

M; - L2(X) — LQ(X), fe C(X),
g 1g.
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A spectral invariant

The data (C(X), Lo(X), Ag) is an invariant for X.
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Connes’ trace theorem

A spectral invariant

The data (C(X), Lo(X), Ag) is an invariant for X.

Theorem (follows from Arendt—Biegert—ter Elst 2012)

Let (M, g1) and (M, g2) be connected compact Riemannian manifolds, with

corresponding Laplace—Beltrami operators A; and A,. Then the following are
equivalent:

@ the Riemannian manifolds (My, g1) and (Ma, g2) are isometric;

@ there exists a unital x-isomorphism ¢ : C(M;) = C(M,) and a unitary
operator U : Ly(My) — Ly(Ma) such that

UM¢ = M¢(f)U, fe C(Ml)
UD; = AyU.
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Connes’ trace theorem

Reconstruction theorem

We can do even better if we replace C(M) by C*>°(M), and replace A, by its
square root Ds, a Dirac operator.

Connes’ reconstruction theorem (2013)

Let (A, H, D) be such that:
@ H is a Hilbert space;
@ A is a commutative x-algebra represented as bounded operators on H;
@ D is a self-adjoint operator on H with compact resolvent;
@ [D, a] extends to a bounded operator for all a € A;
© some more technical assumptions.

Then we can construct S — X such that (A, 7, D) ~ (C>*(X), L>(X, S), Ds),
where Ds is the Dirac operator on the spinor bundle S — X.
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Connes’ trace theorem

Connes’ integration formula

This characterisation of (spin) manifolds suggests that it should be possible to do

geometry using just the multiplication operators My and the Laplace operator A,
(or the Dirac operator Ds).
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Connes’ trace theorem

Connes’ integration formula

This characterisation of (spin) manifolds suggests that it should be possible to do

geometry using just the multiplication operators My and the Laplace operator A,
(or the Dirac operator Ds).

Connes’ trace theorem (1988), version 1
Let (X, g) be a d-dimensional compact Riemannian manifold. Then
1 N

. —4d 5%
I\[ll_l;]'\()O m nz:; A(n, Mf(l + Ag) ) = Cd/X deOIg, fecC (X)
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Connes’ trace theorem

Connes’ integration formula

This characterisation of (spin) manifolds suggests that it should be possible to do
geometry using just the multiplication operators My and the Laplace operator A,
(or the Dirac operator Ds).

Connes’ trace theorem (1988), version 1
Let (X, g) be a d-dimensional compact Riemannian manifold. Then
1 N

. —4d 5%
Nll_>moo m nz:; A(n, Mf(l + Ag) ) = Cd/X deOIg, fecC (X)

This is like a Weyl law. For the spectral counting function of M¢(1 + Ag)*%, the
statement is equivalent to

N(\) = Cd/x f dvolg - A+ o(A).
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Connes’ trace theorem

Technical stuff

Let H be a Hilbert space. An eigenvalue sequence of a compact operator
A € B(H) is a sequence {A(k, A)}ken of the eigenvalues of A listed with
multiplicity, such that {|A(k, A)|}ken is non-increasing.

The usual operator trace Tr can be characterised for trace class operators
A€ Ly CB(H) as

—nI|_>mOOZ)\ (k, A).
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Connes’ trace theorem

Technical stuff

Let H be a Hilbert space. An eigenvalue sequence of a compact operator
A € B(H) is a sequence {A(k, A)}ken of the eigenvalues of A listed with
multiplicity, such that {|A(k, A)|}ken is non-increasing.

The usual operator trace Tr can be characterised for trace class operators
A€ Ly CB(H) as

Tr(A) = lim Z Ak, A).
k=1

The weak trace class £1 oo C B(H) is defined as those compact A for which
Ak, |A]) = O(k™1).
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Technical stuff

Let H be a Hilbert space. An eigenvalue sequence of a compact operator
A € B(H) is a sequence {A(k, A)}ken of the eigenvalues of A listed with
multiplicity, such that {|A(k, A)|}ken is non-increasing.

The usual operator trace Tr can be characterised for trace class operators
A€ Ly CB(H) as

Tr(A) = lim Z Ak, A).
k=1

The weak trace class £1 oo C B(H) is defined as those compact A for which

Ak, |A]) = O(k™1).

The Dixmier trace is defined on £; o, by

Tr,(A4) = w—n||_>n;o log( 2 +n) Z ALk, A), A€ Laoo,

where w € £ (N)* is an extended limit. Note that £ C £ o, but if A € Ly,

Tr,(A) =0.
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Connes’ trace theorem

Connes’ integration formula revisited

Connes' trace theorem (1988), version 2

Let (X, g) be a d-dimensional compact Riemannian manifold. Then for any

smooth function f, have M¢(1 — Ag)’g € L1, 5, and for any extended limit
w € (Uoo)*,

Tro(M(1— A,) %) = cd/ fdvolg, fe C(X).
X
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Connes’ trace theorem

Connes’ integration formula revisited

Connes' trace theorem (1988), version 2

Let (X, g) be a d-dimensional compact Riemannian manifold. Then for any

smooth function f, have M¢(1 — Ag)’g € L1 5, and for any extended limit
w € (Uoo)*,

Tro(M(1— A,) %) = cd/ fdvolg, fe C(X).
X

This version is of deep philosophical importance to Noncommutative Geometry. In
NCG, we study triples (A, H, D) as we have seen before, but where A is
noncommutative. There,

d
2

ar Tr,(a(l+ D?)72), ac WA,

is taken as the definition of the ‘noncommutative integral’.
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Part 2: Pseudodifferential Operators and Connes’ Trace Theorem (again)
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PDEs

Suppose we want to solve the PDE (on R?)

@+3@+ﬁ+@_2@_u_f
Ox? Oy? = Oxdy  Ox Oy o

for some nice function f.
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PDEs

Suppose we want to solve the PDE (on R?)

@ +382u 0%u
Ox?

for some nice function f.
After taking a Fourier transform, we have

0
dy Oxdy  Ox

— —u="f,

dy

((2mi&1)?+3(2mi&)?+(2migy)(2mi&) +(2mi&1) —2(2mi&) +1) (&1, &) = F (61, &).
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PDEs

Suppose we want to solve the PDE (on R?)

@+3@+ 0u +8u_ du
Ox? dy?  Oxdy  Ox dy

for some nice function f.
After taking a Fourier transform, we have

pr(&1, &)d(61, &) = F(&1, ).
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PDEs

Suppose we want to solve the PDE (on R?)

@+3@+ 0u +8u_ du
Ox? dy?  Oxdy  Ox dy

for some nice function f.
After taking a Fourier transform, we have

pr(&1, &)d(61, &) = F(&1, ).

Since p.(£1,62) # 0,
1

pL(§1,§2) f(£1352)7

(&, &) =
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PDEs

Suppose we want to solve the PDE (on R?)

@+3@+ 0u +8u_28u
Ox? dy?  Oxdy  Ox dy

for some nice function f.
After taking a Fourier transform, we have

pr(&1, &)d(61, &) = F(&1, ).

Since p.(£1,62) # 0,

1 A
-1
uxy) = 7 (6.6 ) )
’ pi(é1,6) e
solved!
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Observations

@ For a linear differential operator L = Z|a|<k a,0% on RY, we can write

L=F1o Mp, o F where M, indicates multiplying with the polynomial
pr(§) == Z|a|§k 3 (2mi&)™. This polynomial is called the symbol of L.

Lu(x) = /R ) e>™ X8 py (€)(€)dE.
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Observations

@ For a linear differential operator L = Z|a|<k a,0% on RY, we can write

L=F1o Mp, o F where M, indicates multiplying with the polynomial
pr(§) == Z|a|§k 3 (2mi&)™. This polynomial is called the symbol of L.

Lu(x) = /R ) e>™ X8 py (€)(€)dE.

o If p; is invertible, we have

—IUX: 2mix-&
Lt = [ et a(e)d.

E.-M. Hekkelman (UNSW) The sound of the scattering cosphere bundle August 14 2025 17 /32



Generalising

o Further, if L=73" 4 aa(x)0%, we write p;(x,§) := 3", <k 3a(X)(2mi€),
and N N

Lu(x) = /R Ty (x, ) (§)d
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Generalising

o Further, if L=73" 4 aa(x)0%, we write p(x,§) := -, <k aa(X)(2mi)*

and

Lu(x) = /R Ty (x, ) (§)d

@ Even in this case, if p(x,&) # 0,
s [ emee 1 age)de
R4 pL(X7€)

is often a pretty good guess for the inverse of L.
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PsDOs

Definition (Pseudodifferential operators on R9)

We say that a € S™(R? x RY), m € R, if a € C*(RY x R?) and if
0708 a(x,€)| < Aap (€)™, 0,8 €N,x,£ €RY,

here (£) := (1 + |€|?)/2. We define the operator T, : S(R?) — S(RY)

TR0 = [ @ alx OfQ)de, f e SR,

The class of operators T, is denoted W™(RY).
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Principal part of differential operator

A lot of important properties of a differential operator L =3, <4 aa(x)0*
depend on its principal part 4 3. (x)90°.
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Principal part of differential operator

A lot of important properties of a differential operator L =3, <4 aa(x)0*
depend on its principal part 3, _ 2a(x)0%.

To mimic this for PsDOs, note that we can ‘see’ the principal part of L in its
symbol p; by observing that

() = Y tla,(x)E”, t>0.

lal<k

The principal part is the part of p; that scales as t.
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Classical PsDOs

We therefore define classical pseudodifferential operators as follows.

Definition (classical PsDOs on R?)
We define ST(R? x RY) C S™(R? x R?) as those a for which

a(X7 E) ~ Z am—k(Xa 6)7
k=0

where a,,_ € ST *(R9 x R?) and

am,k(X, tf) = tm_kamfk(xa 5)7 t Z 17 |€| Z L

Accordingly, we define WT(R?) C wm(R).
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Classical PsDOs

We therefore define classical pseudodifferential operators as follows.

Definition (classical PsDOs on R?)

We define ST(R? x RY) C S™(R? x R?) as those a for which

a(X7 E) ~ Z am—k(Xa 6)7
k=0

where a,,_ € ST *(R9 x R?) and
am—k (X, t€) = t" Kap_k(x,€), t>1,]¢>1.
Accordingly, we define WT(R?) C wm(R).
For A € WM(R?), the equivalence class [A] € W™(R?)/W™~1(R9) corresponds in a

natural way to the highest term in the expansion, which can be identified with a
function on R? x S9~1. This is called the principal symbol.
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Connes trace theorem again

The construction of pseudodifferential operators so far can be performed on
compact manifolds (without Riemannian structure!). The principal symbol is then

a function on S*X, the cosphere bundle, which locally looks like U x S9~1, for
U C X.
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Connes trace theorem again

The construction of pseudodifferential operators so far can be performed on
compact manifolds (without Riemannian structure!). The principal symbol is then
a function on S*X, the cosphere bundle, which locally looks like U x S9~1, for
UcCX.

Connes' trace theorem (1988), version 3

Let X be a compact manifold, and let P € W_(X). Then P € L; o, and for any
extended limit w € (£50)*,

Tro,(P) = d(zlﬂd) /S*Xa,d(P) dp.

Here, o_4(P) is the part of the symbol of P that is —d-homogeneous, i.e. the
principal symbol of P.
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Connes trace theorem again

The construction of pseudodifferential operators so far can be performed on
compact manifolds (without Riemannian structure!). The principal symbol is then

a function on S*X, the cosphere bundle, which locally looks like U x S9~1, for
U C X.

Connes' trace theorem (1988), version 3

Let X be a compact manifold, and let P € W_(X). Then P € L; o, and for any
extended limit w € (£50)*,

Tro,(P) = d(;ﬂd) /S*Xa,d(P) dp.

Here, o_4(P) is the part of the symbol of P that is —d-homogeneous, i.e. the
principal symbol of P.

For the connoisseurs: the right hand side is the Wodzicki residue.
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Scattering calculus

Part 3: Scattering Calculus and Connes’ Trace Theorem (again again)

E.-M. Hekkelman (UNSW) The sound of the scattering cosphere bundle August 14 2025 23 /32



Scattering calculus

Connes trace theorem on Euclidean space

For RY, we get the following version for free.

Connes' trace theorem (1988), version 3b

Let P e \Il;d(]Rd), such that its symbol is compactly supported in the first
variable. Then for any extended limit w € (¢5)*,

1
T s, o PU O

Here, o_4(P) is the part of the symbol of P that is —d-homogeneous, i.e. the
principal symbol of P.

Tr,(P) =

E.-M. Hekkelman (UNSW) The sound of the scattering cosphere bundle August 14 2025 24 /32



Scattering calculus

A Problem

This version of Connes’ Trace Theorem cannot hold for all \llgd(]Rd). For
g € C(RY), define
P = g(V)M<X>7d.

We have that P € \IJQOO(]R") C \IJ;d(Rd), where o_4(P) = 0.
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A Problem

This version of Connes’ Trace Theorem cannot hold for all \llgd(Rd). For
g € C(RY), define
P = g(V)M<X>7d.

We have that P € \IJ;‘X’(]R") C \IJ;d(Rd), where o_4(P) = 0.

However, F, o Po F 71 = M(1+ INEES W 9(R9) with symbol compactly
supported in the first variable, and

Try,(P) = Try(Fi o P f_l)—VOISd_I/ (x)d
= o] o = :
rw rw X X d(27r)d Rdg X X
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A Problem

This version of Connes’ Trace Theorem cannot hold for all \llgd(Rd). For
g € C(RY), define
P = g(V)M<X>7d.

We have that P € \IJ;‘X’(]R") C \IJ;d(Rd), where o_4(P) = 0.

However, F, o Po F 71 = M(1+ INEES W 9(R9) with symbol compactly
supported in the first variable, and

Try,(P) = Try(Fi o P f_l)—VO|Sd_1/ (x)d
= o o = — :
rw rw X X d(27r)d Rdg X X

Whereas on compact manifolds we have that W=9=1(X) C £; C ker(Tr,), for
non-compact spaces there can be non-trivial contributions solely from the spatial
asymptotics of the symbol of the operator.
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Scattering calculus

Scattering Calculus

Definition (Scattering pseudodifferential calculus on RY)

We say that a € ST/(RY x RY), m, | € R, if a € C®(R? x RY) and
1008 a(x, )| < Aas(x)! "1™ a, B e N x, € €RY.

Recall that (&) := (1 + [¢]?)Y/2.

We define W™/(R9) accordingly.
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Classical PsDOs

We can take a shortcut to define classical scattering pseudodifferential operators
as follows.

Definition (classical scattering PsDOs on RY)

Let RY be the radial compactification of RY.

We define S™° (R x RY) C S™/(R? x R?) as those a for which

sc,cl

a(x, €)(x)~(€)~? extends to a smooth function C®(R9 x RY).
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Classical PsDOs

We can take a shortcut to define classical scattering pseudodifferential operators
as follows.

Definition (classical scattering PsDOs on RY)

Let RY be the radial compactification of RY.

We define S™° (R x RY) C S™/(R? x R?) as those a for which

sc,cl

a(x, €)(x)~(€)~? extends to a smooth function C®(R9 x RY).

Accordingly, we define W' (R7) C wi/(R9).
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Classical PsDOs

We can take a shortcut to define classical scattering pseudodifferential operators
as follows.

Definition (classical scattering PsDOs on RY)

Let RY be the radial compactification of RY.

We define S™° (R x RY) C S™/(R? x R?) as those a for which

sc,cl

a(x, €)(x)~(€)~? extends to a smooth function C®(R9 x RY).

Accordingly, we define W' (R7) C wi/(R9).

Note that by Taylor's theorem, this is equivalent to a(x, &) admitting asymptotic
expansions of the right kind as x — oo, as £ — o0, and as both x,£{ — oco.

E.-M. Hekkelman (UNSW) The sound of the scattering cosphere bundle August 14 2025 27/32



Scattering cosphere bundle

Whereas on R we have W7 (R?)/Wm—1(RY) ~ C>(R9 x S?~1) (also known as
C>(S5*RY)), for the scattering calculus the principal symbol is more complicated.
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Scattering cosphere bundle

Whereas on R we have W7 (R?)/Wm—1(RY) ~ C>(R9 x S?~1) (also known as
C>(S5*RY)), for the scattering calculus the principal symbol is more complicated.

For A€ \U;"C’ylc,(Rd), the equivalence class [A] € W™/(R9)/wm—L/=1(R9)

corresponds in a natural way to a smooth function in C*°(9T*R9), where

OT*RY := (R x RY) \ (RY x RY) ~ (RY x SI71) Ly (S971 x $471) L (S471 x RY).

R x Sd—l Sd—l X Sd—l
R? x R? §4-1 x R?
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Examples

_d
2

€ W_“7°(R?), we have

sc,cl

For f € C°(RY), we have M¢(1 + A)
Me(14+ A)~% € L1 o, and

d 1 —d.—d —
2) = —— ’ Me(1+ A
) d(2mr)d /a?fRd 75’ (M )

(—\Z)(lf;l/wf(x)dx).

d
2

TI‘w(Mf(1+A)7 )d’u
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Scattering calculus

Examples

For f € C°(RY), we have M¢(1+ A)~% € \Il;ijc’foo(Rd), we have
Me(14+ A)~% € L1 o, and

_d 1 —d,— _d
ML) )= G [ O 8

(— V;(' 287:)_; /R () dx).

Now for the Fourier transform f(V)M,,y-¢, we have f(V)M,,y-a € W_°ST9(RY),

sc,cl
and
1

T (F(V) My ) = T30 /6 S AV)My )
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Scattering calculus

Known result

—d,—d
sc,cl

One might think that W (RY) C L1, but this is not true:

_ _4d
ML+ D)2 ¢ L1 o0
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Scattering calculus

Known result

One might think that W_%(R?) C L‘l’oo, but this is not true:

ML (1+A) " ¢ L1

Theorem (Nicola 2003)
Let P e W_% 9 "Y(R?). Then P € £; o, and

sc,cl

1

Tru(P) = <o g 9(P) d.
(P) = Sy / ot P) d

If Pe \Ilscdd L=9(R9), the same formula holds with integral over SY~1 x R

If P ew_ % (R9), then

sc,cl

li P) —d=d(P)dyp.
im Z AnP)= [ o pyd

N—oo (Iog (N +2))
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New result

Theorem (H.—Levitina-McDonald-Sukochev-Zanin, WIP)

Let P e W % 9(RY). Then P € L« if and only if 0.~ 9(P) € Ly(OT*R), in
which case 1

Tru(P) =~ g 49(P) d.
(P) = g7 | 7 (P d

Next step: scattering metrics?
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New result

Theorem (H.—Levitina-McDonald-Sukochev-Zanin, WIP)

Let P e W_%"9(R9). Then P € L1 if and only if o,¢¢(P) € L;(0T*RY), in

sc,cl
which case

1
Tr,(P) = Z49(P) dp.
P = amy /aﬁg (P) e

Next step: scattering metrics?

Note: if P € L1,60N W_%"9(R9), then its principal symbol is zero at the corner

sc,cl
S971 x S9=1. The relevant part of the measure dy here is the Lebesgue measure
on RY x §9=1 1S9—1 x R,
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Thanks

Thanks for the invite!

The sound of the scattering cosphere bundle August 14 2025 32/32



	Introduction
	Connes' trace theorem
	PsDOs
	Scattering calculus

