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Introduction

Summary of this talk

1 Motivation for studying MOIs

2 Pseudodifferential calculus

3 MOIs of pseudodifferential operators

This talk is based on joint work with Edward McDonald and Teun van Nuland.
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Motivation

Part 1: Motivation
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Motivation

Exhibit A

From [ConnesMoscovici1995]
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Motivation

Exhibit B

From [ConnesMoscovici1995]
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Motivation

Exhibit C

From [Higson2003]
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Motivation

Exhibit D

From [CareyPhillipsRennieSukochev2006]
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Motivation

Exhibit E

From [vanSuijlekom2011]
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Motivation

Multiple operator integrals

Let ϕ : Rn+1 → C be such that

ϕ(λ0, . . . , λn) =

ˆ
Ω

a0(λ0, ω) · · · an(λn, ω)dν(ω),

with finite measure space (Ω, ν) and measurable and bounded aj : R× Ω → C.

Let H0, . . . ,Hn be self-adjoint, for V1, . . . ,Vn ∈ B(H) define the MOI

TH0,...,Hn

ϕ (V1, . . . ,Vn)ψ

:=

ˆ
Ω

a0(H0, ω)V1a1(H1, ω) · · ·Vnan(Hn, ω)ψdν(ω), ψ ∈ H.

Then,

TH0,...,Hn

ϕ : B(H)× · · · × B(H) → B(H)

and this does not depend on how we represent ϕ (its symbol).
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Motivation

A natural phenomenon

Consider for example f : C → C holomorphic, and A,B ∈ B(H) self-adjoint.
Suppose we want to study f (A)− f (B).

For a large enough contour γ,

f (A)− f (B) =
1

2πi

ˆ
γ

f (z)(z − A)−1 dz − 1

2πi

ˆ
γ

f (z)(z − B)−1 dz

=
1

2πi

ˆ
γ

f (z)(z − A)−1(A− B)(z − B)−1 dz

= TA,B
f [1]

(A− B).

The symbol f [1] here is very typical.
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Motivation

Divided differences

Symbols of MOIs encountered in the wild are almost always divided differences,
which are defined recursively for f ∈ C n(R) as

f [0](λ) := f (λ);

f [n](λ0, . . . , λn) :=
f [n−1](λ0, . . . , λn−1)− f [n−1](λ1, . . . , λn)

λ0 − λn
,

with an appropriate limit if λ0 = λn. In particular,

1

n!
f (n)(λ) = f [n](λ, . . . , λ).
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Motivation

Example MOIs 2

For example, the JLO cocycle is

ˆ
∆n

Tr
(
ηa0e

−t0D
2

[D, a1]e
−t1D

2

· · · [D, an]e−tnD
2)
dt

= Tr(ηa0T
D2

f [n]([D, a1], . . . , [D, an])),

with f (x) = exp(−x).
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Motivation

Why you should care

MOIs are a powerful tool in analysis:

f (H + V )− f (H) = TH+V ,H
f [1]

(V ) (analogous to Duhamel’s formula);

[f (H),V ] = TH,H
f [1]

([D,V ]);

dn

dtn f (H + tV )|t=0 = TH,...,H
f [n]

(V , . . . ,V ),

each of which has been used to obtain sharp estimates. (Potapov, Sukochev,
Skripka, Caspers, Montgomery-Smith, McDonald, Peller, ...)

Furthermore, MOIs can systematise operator integral techniques in NCG.
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Motivation

A problem

If you write, like in The Local Index Formula in Noncommutative Geometry by
Nigel Higson, for a spectral triple (A,H,D) and a ∈ A,

[D−2z , a] =

[ˆ
γ

λ−z(λ− D2)−1dλ, a

]
=

ˆ
γ

λ−z [(λ− D2)−1, a]dλ

=

ˆ
γ

λ−z(λ− D2)−1[D2, a](λ− D2)−1dλ,

then [D2, a] ̸∈ B(H), so this is not a standard MOI.
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Pseudodifferential calculus

Part 2: Abstract pseudodifferential calculus
in the style of Connes–Moscovici, Higson, Guillemin
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Pseudodifferential calculus

Pseudodifferential operators

On Rd , a differential operator L =
∑

|α|≤k aα(x)∂
α can be written as

L = F−1 ◦MpL ◦ F ,

where MpL indicates multiplying with the polynomial pL(x , ξ) :=
∑

|α|≤k aα(x)ξ
α.

Generally speaking, a pseudodifferential operator of order k on Rd is an operator
of the form L = F−1 ◦MpL ◦ F where the function pL is more general, such that

L : Hs+k,2 → Hs,2,

where
Hs,2(Rn) := {f ∈ S ′(Rn) : F−1

[
(1 + |ξ|2)s/2F f

]
∈ L2(Rn)},

are Bessel potential Sobolev spaces.

On a smooth manifold M, we can define classes of pseudodifferential operators on
L2(M) by patching together operators like this.
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Pseudodifferential calculus

Sobolev spaces

Given an invertible, positive self-adjoint operator Θ on a separable Hilbert space
H, we can define the ‘Sobolev’ spaces Hs , s ∈ R, as the completion of domΘs

under the norm

∥ξ∥2s = ⟨ξ, ξ⟩s := ⟨Θsξ,Θsξ⟩H = ∥Θsξ∥2, ξ ∈ domΘs .

This forms a Hilbert space. We have continuous embeddings

Ht ⊆ Hs , s ≤ t,

because
∥Θsξ∥ ≤ ∥Θs−t∥∞∥Θtξ∥.

We put

H∞ :=
⋂
s∈R

Hs , H−∞ :=
⋃
s∈R

Hs ,

and we get for free that H∞ is dense in H.
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Pseudodifferential calculus

Analytic order

Even though Θ itself is an unbounded operator on H, if we regard it as an operator

Θ : H1 → H0 = H,

it is a perfectly good bounded operator:

∥Θ∥H1→H0 = sup
ξ:∥Θξ∥≤1

∥Θξ∥ = 1.

We define opr (Θ) for r ∈ R as those T : H∞ → H∞ that extend to a bounded
operator

T : Hs+r → Hs , s ∈ R.

We define OPr (Θ) as those T ∈ opr (Θ) for which δnΘ(T ) ∈ opr (Θ) for all n ∈ N,
where δΘ(T ) = [Θ,T ].
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Pseudodifferential calculus

Examples

If ∆ is the Laplace operator on Rn, setting Θ = (1−∆)1/2 gives the
standard (Bessel potential) Sobolev spaces. The k-th order
(pseudo)differential operators are contained in OPk(Θ).

Taking Θ = (1−∆)1/2 where ∆ is the sub-Laplacian on a stratified Lie
group gives the Sobolev spaces defined by Folland and Stein.

For a spectral triple (A,H,D) it makes sense to put Θ = (1 + D2)1/2. Then
for example D ∈ OP1(Θ), and for a regular spectral triple a, [D, a] ∈ OP0(Θ)
for all a ∈ A.

If Θ is bounded, Hs ≃ H and opr (Θ) = B(H) for all s, r ∈ R.
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Pseudodifferential calculus

Elliptic operators

Our goal is to construct MOIs where all operators are in op(Θ). First, we need a
functional calculus for such operators. Analogously to usual notions of
pseudodifferential operators, a functional calculus can be constructed for elliptic
operators.

We define T ∈ opr (Θ) to be Θ-elliptic, if there is a parametrix P ∈ op−r (Θ) such
that

TP = 1H∞ + op−∞(Θ);

PT = 1H∞ + op−∞(Θ).

By a Borel Lemma argument, it suffices if

TP = 1H∞ + op−1(Θ);

PT = 1H∞ + op−1(Θ).
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Pseudodifferential calculus

Elliptic operators 2

For any spectral triple (A,H,D) and Θ = (1 + D2)1/2, we have that D ∈ op1(Θ)
is Θ-elliptic. Furthermore, D + V is Θ-elliptic if V ∈ opr (Θ) with r < 1.

If T ∈ opr (Θ) is Θ-elliptic,

If x ∈ H−∞, then Tx ∈ Hs implies that x ∈ Hs+r (elliptic regularity).

If T : Hr ⊆ H0 → H0 (i.e. r ≥ 0) is a symmetric operator, then it is
self-adjoint given domain Hr . This situation will be referred to as ‘T is
Θ-elliptic and symmetric’. Note: this does not imply that

T : Hr+s ⊆ Hs → Hs

is self-adjoint for any other s ∈ R. In fact, these operators need not even be
symmetric or normal.
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Pseudodifferential calculus

Functional calculus

We write f ∈ Lβ∞(R) for some β ∈ R if f (x)(1 + x2)−β/2 ∈ L∞(R).

H.–McDonald–van Nuland (2024)

Let T ∈ opr (Θ), r > 0, be Θ-elliptic and symmetric. If f ∈ Lβ∞(R), β ∈ R, then

f (T ) ∈ oprβ(Θ).

Furthermore, if A is self-adjoint on H, A ∈ opt(Θ), t ∈ R, and A commutes
strongly with T , then for f ∈ Lβ∞(R), β ≥ 0, we have

f (A) ∈ optβ(Θ).

This second part applies for example to i d
dx in op(1−∆)1/2 on Rd .
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MOIs as pseudodifferential operators

Part 3: MOIs as pseudodifferential operators

E.-M. Hekkelman (MPIM Bonn) The Joys of MOIs 28 October 2025 23 / 33



MOIs as pseudodifferential operators

Unbounded MOIs

H.–McDonald–van Nuland (2024)

Let Hi ∈ ophi (Θ), hi > 0 Θ-elliptic and symmetric for i = 0, . . . , n, and
Xi ∈ opri (Θ) for i = 1, . . . , n. Let ϕ : Rn+1 → C such that

ϕ(λ0, . . . , λn) =

ˆ
Ω

a0(λ0, ω) · · · an(λn, ω)dν(ω),

with finite measure space (Ω, ν) with aj(x , ω)(1 + x2)−βj/2 : R× Ω → C
measurable and bounded. Then for ψ ∈ H∞,

TH0,...,Hn

ϕ (X1, . . . ,Xn)ψ :=

ˆ
Ω

a0(H0, ω)X1a1(H1, ω) · · ·Xnan(Hn, ω)ψdν(ω)

is a well-defined vector in H∞ independent of the representation of ϕ, and

TH0,...,Hn

ϕ : opr1(Θ)× · · · × oprn(Θ) → op
∑

j rj+
∑

j βjhj (Θ).
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MOIs as pseudodifferential operators

Unbounded MOIs: the useful bit

If f ∈ C n+2(R), and f (k) ∈ Lβ−k
∞ (R) for k = 0, . . . , n + 2, then for H ∈ oph(Θ),

h > 0 Θ-elliptic and symmetric, and Xi ∈ opri (Θ),

TH,...,H
f [n]

(X1, . . . ,Xn) ∈
⋂
ε>0

op(β−n)h+
∑

j rj+ε(Θ).

If f ∈ C∞(R) and f (k) ∈ Lβ−k
∞ (R) for all k ∈ N, we write f ∈ Sβ(R).

For integral we saw earlier, with the appropriate conditions on D and a, we have

ˆ
γ

λ−z(λ− D2)−1[D2, a](D2 − λ)−1dλ = TD2,D2

f [1]
([D2, a]) ∈

⋂
ε>0

op−2ℜ(z)−1+ε(Θ),

with f (x) = x−z and Θ = (1 + D2)
1
2 .
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MOIs as pseudodifferential operators

Two rules

MOIs as we defined them come with two identities:

1 f (A)− f (B) = TA,B
f [1]

(A− B);

2 [f (H), a] = TH,H
f [1]

([H, a]),

and the higher order analogues (since TH
f [0]

() = f (H))

1 TH0,...,A,...,Hn

f [n]
(V1, . . . ,Vn)− TH0,...,B,...,Hn

f [n]
(V1, . . . ,Vn)

= TH0,...,A,B,...,Hn

f [n+1] (V1, . . . ,A− B, . . . ,Vn);

2 TH0,...,Hn

f [n]
(V1, . . . ,Vj−1, aVj , . . . ,Vn)− TH0,...,Hn

f [n]
(V1, . . . ,Vj−1a,Vj , . . . ,Vn)

= T
H0,...,Hj ,Hj ,...,Hn

f [n+1] (V1, . . . ,Vj−1, [Hj , a],Vj+1, . . . ,Vn).
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MOIs as pseudodifferential operators

Taylor expansion

The first rule on its own gives a Taylor expansion:

f (H + V )
(1)
= f (H) + TH+V ,H

f [1]
(V )

(1)
= f (H) + TH,H

f [1]
(V ) + TH+V ,H,H

f [2]
(V ,V ),

and repeat. We get for all N ∈ N

f (H + V ) =
N∑

n=0

TH,...,H
f [n]

(V , . . . ,V ) + TH+V ,H,...,H
f [N+1] (V , . . . ,V ).

Note: if H and V commute,

TH,...,H
f [n]

(V , . . . ,V ) =
1

n!
f (n)(H)V n.
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MOIs as pseudodifferential operators

Commutator expansion

In similar manner, by rule (2) we get

TH,...,H
f [n]

(V1, . . . ,Vn) = V1T
H,...,H
f [n]

(1,V2, . . . ,Vn) + TH,...,H
f [n+1] ([H,V ], 1,V2, . . . ,Vn),

repeating and remembering that TH,...,H
f [n]

(1, . . . , 1) = 1
n! f

(n)(H), we get

TH,...,H
f [n]

(V1, . . . ,Vn) =
N∑

m=0

∑
m1+···+mn=m

Cm1,...,mn

(n +m)!
δm1

H (X1) · · · δmn

H (Xn)f
(n+m)(H)

+ SN
H,V .

The combinatorics to get this expression is exactly the same as how one gets the
cocycle of the local index formula, writing A(k) := δnD2(A),

ϕn(a0, . . . , an)

=
∑

|k|,q≥0

cn,k,q Resz=0 z
qTr

(
a0[D, a1]

(k1) · · · [D, an](kn)|D|−2|k|−2z−n
)
,
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MOIs as pseudodifferential operators

Asymptotic expansions

We say that T ∼
∑∞

k=0 Tk for T ,Tk ∈ op(Θ) if

T −
N∑

k=1

Tk ∈ opmN (Θ), mN ↓ −∞.

If f ∈ Sβ(R), if H ∈ oph(Θ), h > 0 is Θ-elliptic and symmetric, and if
V ∈ opr (Θ) with r < h, then

f (H + V ) ∼
∞∑
n=0

TH,...,H
f [n]

(V , . . . ,V ).

If furthermore δnH(V ) ∈ opr+n(h−ε) for some ε > 0 (for example H = Θ, V ∈ OPr )

TH,...,H
f [n]

(V , . . . ,V ) ∼
∞∑

m=0

∑
m1+···+mn=m

Cm1,...,mn

(n +m)!
δm1

H (V ) · · · δmn

H (V )f (n+m)(H).

Combined,

f (H + V ) ∼
∞∑

n,m=0

∑
m1+···+mn=m

Cm1,...,mn

(n +m)!
δm1

H (V ) · · · δmn

H (V )f (n+m)(H).
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MOIs as pseudodifferential operators

A familiar expansion

Recall that
[f (Θ),X ] = TΘ,Θ

f [1]
([Θ,X ]).

Therefore, for X ∈ OPr (Θ), the expansions on the last slide give

[f (Θ),X ] ∼
∞∑
k=1

1

k!
δkΘ(X )f (k)(Θ).

In particular,

[Θα,X ] ∼
∞∑
k=1

(
α

k

)
δkΘ(X )Θα−k , α ∈ C,

and

[log(Θ),X ] ∼
∞∑
k=1

(−1)k−1

k
δkΘ(X )Θ−k ,

and we have that [Θα,X ] ∈ OPr+ℜ(α)−1(Θ) and [log(Θ),X ] ∈ OPr−1(Θ).
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MOIs as pseudodifferential operators

Asymptotic trace expansions

H.–McDonald–van Nuland (2024)

Let (A,H,D) be a regular s-summable spectral triple ((1 + D2)−
1
2 ∈ Ls). Let V

self-adjoint and bounded, generated by A and D. Then if f has sufficient
regularity, as t → 0,

Tr(f (tD + tV ))

=
N∑

n=0

N∑
m=0

∑
m1+···+mn=m

tn+mCm1,...,mn

(n +m)!
Tr

(
δm1

D (V ) · · · δmn

D (V )f (n+m)(tD)
)

+ O(tN+1−s).
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MOIs as pseudodifferential operators

Bonus: Functional calculus for OP

If A ∈ opr (Θ) is Θ-elliptic and symmetric, then by rule (2) we know that for
f ∈ Lβ∞(R)

f (A) ∈ opβr (Θ),

[Θ, f (A)] = TA,A
f [1]

([Θ,A]),

and similar expressions hold for δnΘ(f (A)). If A ∈ OPr (Θ), then we can deduce
what the order is of these expressions if f ∈ Sβ(R), so that

δnΘ(f (A)) ∈
⋂
ε>0

oprβ+ε(Θ).

We therefore conclude that f (A) ∈
⋂

ε>0 OP
rβ+ε(Θ).

E.-M. Hekkelman (MPIM Bonn) The Joys of MOIs 28 October 2025 32 / 33



MOIs as pseudodifferential operators

Thanks

Thank you for your attention!
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