The Joy of MOIs UIUC 2024

Eva-Maria Hekkelman

UNSW

October 22 2024

EM. Hekkelman ((UNSW)
-----------------	--------

2

1/31

< □ > < □ > < □ > < □ > < □ >

Summary of this talk

- Motivation for studying MOIs
- Pseudodifferential calculus
- MOIs of pseudodifferential operators

This talk is based on joint work with Ed McDonald and Teun van Nuland.

Part 1: Motivation

2

イロト 不良 とくほとくほう

Question (Krein)

Is every Lipschitz function operator Lipschitz?

< □ > < □ > < □ > < □ > < □ >

Question (Krein)

Is every Lipschitz function operator Lipschitz? In other words, does $|f(t) - f(s)| \leq |t - s|$ imply

$$\|f(A)-f(B)\|_p\lesssim \|A-B\|_p?$$

Question (Krein)

Is every Lipschitz function operator Lipschitz? In other words, does $|f(t) - f(s)| \leq |t - s|$ imply

 $\|f(A)-f(B)\|_p \lesssim \|A-B\|_p?$

(Answer: no if p = 1 or $p = \infty$, yes if 1 .)

Question (Krein)

Is every Lipschitz function operator Lipschitz? In other words, does $|f(t) - f(s)| \leq |t - s|$ imply

 $\|f(A)-f(B)\|_p \lesssim \|A-B\|_p?$

(Answer: no if p = 1 or $p = \infty$, yes if 1 .)

How do we effectively study the following operators?

Question (Krein)

Is every Lipschitz function operator Lipschitz? In other words, does $|f(t) - f(s)| \leq |t - s|$ imply

$$\|f(A)-f(B)\|_p \lesssim \|A-B\|_p?$$

(Answer: no if
$$p = 1$$
 or $p = \infty$, yes if $1 .)$

How do we effectively study the following operators?

•
$$f(A) - f(B);$$

Question (Krein)

Is every Lipschitz function operator Lipschitz? In other words, does $|f(t) - f(s)| \leq |t - s|$ imply

$$\|f(A)-f(B)\|_p \lesssim \|A-B\|_p?$$

(Answer: no if p = 1 or $p = \infty$, yes if 1 .)

How do we effectively study the following operators?

- f(A) f(B);
- [f(A), B];

Question (Krein)

Is every Lipschitz function operator Lipschitz? In other words, does $|f(t) - f(s)| \leq |t - s|$ imply

$$\|f(A)-f(B)\|_p \lesssim \|A-B\|_p?$$

(Answer: no if p = 1 or $p = \infty$, yes if 1 .)

How do we effectively study the following operators?

- f(A) f(B);
- [f(A), B];
- $\frac{d^n}{dt^n}|_{t=0}f(A+tB).$

< ロ > < 同 > < 回 > < 回 >

Motivation

Exhibit A

Let us now show that if $b \in \cap$ Dom $L^k \mathbb{R}^q$ then $b \in$ Dom δ . The proof is more subtle than one would expect, because the obvious argument, using

$$|D| = \pi^{-1} \int_0^\infty \frac{D^2}{D^2 + \mu} \ \mu^{-1/2} \ d\mu \ ,$$

requires some care. Indeed, one gets from the above

$$[|D|,b] = \pi^{-1} \int_0^\infty (D^2 + \mu)^{-1} \ [D^2,b] \ (D^2 + \mu)^{-1} \ \mu^{1/2} \ d\mu \ .$$

We can replace $[D^2, b]$ by |D|, which has the same size, and get

$$\int_0^\infty (D^2 + \mu)^{-2} |D| \ \mu^{1/2} \ d\mu = \int_0^\infty (1 + t)^{-2} \ t^{1/2} \ dt \ .$$

For this to work, we need to move $[D^2,b]$ in front of the above integral, i.e. use the finiteness of the norm of

$$\int_0^\infty \underbrace{[(D^2+\mu)^{-1}, [D^2, b]]}_{-(D^2+\mu)^{-1}[D^2, [D^2, b]](D^2+\mu)^{-1}} (D^2+\mu)^{-1} \ \mu^{1/2} \ d\mu \ .$$

This finiteness follows from:

1) $(D^2 + \mu)^{-1} [D^2, [D^2, b]]$ bounded since $b \in \text{Dom} L^2$

2)
$$\int_0^\infty \|(D^2 + \mu)^{-2}\| \ \mu^{1/2} \ d\mu \le C \int_0^1 \mu^{1/2} \ d\mu + \int_1^\infty \mu^{-3/2} \ d\mu < \infty.$$

Once $[D^2, b]$ is moved in front the above calculation applies.

From [ConnesMoscovici1995]

The Joy of MOIs

э

5/31

Motivation

Exhibit B

Now, onwards with the computation, the first part of which is straightforward:

$$\begin{split} [\Delta^{-z}, A] B &= \frac{1}{2\pi i} \int \lambda^{-z} [(\lambda - \Delta)^{-1}, A] B \, d\lambda \\ &= \frac{1}{2\pi i} \int \lambda^{-z} (\lambda - \Delta)^{-1} [\Delta, A] (\lambda - \Delta)^{-1} B \, d\lambda \\ &= \int \lambda^{-z} (\lambda - \Delta)^{-1} [\Delta, A] B (\lambda - \Delta)^{-1} \, d\lambda \\ &+ \int \lambda^{-z} (\lambda - \Delta)^{-1} [\Delta, A] (\lambda - \Delta)^{-1} [\Delta, B] (\lambda - \Delta)^{-1} \, d\lambda \end{split}$$

(In the last step we did two things at once: we commuted B past $(\lambda - \Delta)^{-1}$ and we then used the formula $[S^{-1}, T] = S^{-1}[T, S]S^{-1}$.) The operators $[\Delta, A]$ and $[\Delta, B]$ have orders 1 and 2, respectively.

Before going on, we shall introduce some better notation for our contour integrals.

2.5 Definition. If $D_0, ..., D_p$ are differential operators on the closed manifold M, then denote by $I_z(D_0, ..., D_p)$ the integral

$$\frac{1}{2\pi i}\int \lambda^{-z} D_0 (\lambda - \Delta)^{-1} \cdots D_p (\lambda - \Delta)^{-1} \, d\lambda$$

(in the integral, copies of $(\lambda - \Delta)^{-1}$ alternate with the operators D_j). The integral converges if Re(z) < n, in the sense we discussed above, and defines an operator on $C^{\infty}(M)$.

From [Higson2003]

The Joy of MOIs

October 22 2024

6/31

Motivation

Exhibit C

Theorem 4.2 (Semifinite Odd Local Index Theorem). Let $(\mathcal{A}, \mathcal{H}, \mathcal{D})$ be an odd finitely summable QC^{∞} spectral triple with spectral dimension $p \geq 1$. Let $N = \lfloor p/2 \rfloor + 1$ where $\lfloor \cdot \rfloor$ denotes the integer part, and let $u \in \mathcal{A}$ be unitary. Then

1)
$$sf(\mathcal{D}, u^*\mathcal{D}u) = \frac{1}{\sqrt{2\pi i}} res_{r=(1-p)/2} \left(\sum_{m=1,odd}^{2N-1} \phi_m^r(Ch_m(u)) \right)$$

where for $a_0, ..., a_m \in \mathcal{A}$, $l = \{a + iv : v \in \mathbf{R}\}$, 0 < a < 1/2, $R_s(\lambda) = (\lambda - (1 + s^2 + \mathcal{D}^2))^{-1}$ and r > 0 we define $\phi_m^r(a_0, a_1, ..., a_m)$ to be

$$\frac{-2\sqrt{2\pi i}}{\Gamma((m+1)/2)}\int_0^\infty s^m \tau\left(\frac{1}{2\pi i}\int_l^{\lambda^{-p/2-r}}a_0R_s(\lambda)[\mathcal{D},a_1]R_s(\lambda)\cdots[\mathcal{D},a_m]R_s(\lambda)d\lambda\right)ds.$$

In particular the sum on the right hand side of 1) analytically continues to a deleted neighbourhood of r = (1 - p)/2 with at worst a simple pole at r = (1 - p)/2. Moreover, the complex function-valued cochain $(\phi_m^r)_{m=1,odd}^{2N-1}$ is a (b, B) cocycle for \mathcal{A} modulo functions holomorphic in a half-plane containing r = (1 - p)/2.

From [CareyPhillipsRennieSukochev2006]

э

7/31

イロト 不得 トイヨト イヨト

Multiple operator integrals

Let $\phi : \mathbb{R}^{n+1} \to \mathbb{C}$ be such that

$$\phi(\lambda_0,\ldots,\lambda_n)=\int_\Omega a_0(\lambda_0,\omega)\cdots a_n(\lambda_n,\omega)d
u(\omega),$$

with finite measure space (Ω, ν) and measurable and bounded $a_j : \mathbb{R} \times \Omega \to \mathbb{C}$.

Multiple operator integrals

Let $\phi: \mathbb{R}^{n+1} \rightarrow \mathbb{C}$ be such that

$$\phi(\lambda_0,\ldots,\lambda_n)=\int_{\Omega}a_0(\lambda_0,\omega)\cdots a_n(\lambda_n,\omega)d\nu(\omega),$$

with finite measure space (Ω, ν) and measurable and bounded $a_j : \mathbb{R} \times \Omega \to \mathbb{C}$.

Let H_0, \ldots, H_n be self-adjoint, for $V_1, \ldots, V_n \in B(\mathcal{H})$ define the MOI

$$T_{\phi}^{H_0,\ldots,H_n}(V_1,\ldots,V_n)\psi$$

:= $\int_{\Omega} a_0(H_0,\omega)V_1a_1(H_1,\omega)\cdots V_na_n(H_n,\omega)\psi d\nu(\omega), \quad \psi \in \mathcal{H}.$

Then,

$$T_{\phi}^{H_0,...,H_n}:B(\mathcal{H}) imes\cdots imes B(\mathcal{H}) o B(\mathcal{H})$$

and this does not depend on how we represent ϕ (its *symbol*).

E.-M. Hekkelman (UNSW)

э

8/31

イロト 不得 トイヨト イヨト

Divided differences

Symbols of MOIs encountered in the wild are almost always divided differences, which are defined recursively for $f \in C^n(\mathbb{R})$ as

$$f^{[0]}(\lambda) := f(\lambda);$$

$$f^{[n]}(\lambda_0, \dots, \lambda_n) := \frac{f^{[n-1]}(\lambda_0, \dots, \lambda_{n-1}) - f^{[n-1]}(\lambda_1, \dots, \lambda_n)}{\lambda_0 - \lambda_n},$$

with an appropriate limit if $\lambda_0 = \lambda_n$. In particular,

$$\frac{1}{n!}f^{(n)}(\lambda)=f^{[n]}(\lambda,\ldots,\lambda).$$

We can write the JLO cocycle as

$$\int_{\Delta_n} \operatorname{Tr} \left(\eta a_0 e^{-t_0 D^2} [D, a_1] e^{-t_1 D^2} \cdots [D, a_n] e^{-t_n D^2} \right) dt$$

= $\operatorname{Tr} \left(\eta a_0 T_{f^{[n]}}^{D^2} ([D, a_1], \dots, [D, a_n]) \right)$

with $f(x) = \exp(-x)$.

2

< □ > < □ > < □ > < □ > < □ >

MOIs are a powerful tool in analysis:

L.=IVI. HERKEIIIIali (UNSVV)	1. Hekkelman (UN	ISW)
------------------------------	------------------	------

2

< □ > < □ > < □ > < □ > < □ >

MOIs are a powerful tool in analysis:

• $f(H + V) - f(H) = T_{f^{[1]}}^{H+V,H}(V)$ (analogous to Duhamel's formula);

э

イロト イヨト イヨト イヨト

MOIs are a powerful tool in analysis:

- $f(H + V) f(H) = T_{f^{[1]}}^{H+V,H}(V)$ (analogous to Duhamel's formula);
- $[f(H), V] = T_{f^{[1]}}^{H,H}([D, V]);$

э

イロン イ団 とく ヨン イヨン

MOIs are a powerful tool in analysis:

• $f(H + V) - f(H) = T_{f^{[1]}}^{H+V,H}(V)$ (analogous to Duhamel's formula);

•
$$[f(H), V] = T_{f^{[1]}}^{H,H}([D, V]);$$

•
$$\frac{d^n}{dt^n}|_{t=0}f(H+tV) = T^{H,...,H}_{f^{[n]}}(V,...,V),$$

each of which has been used to obtain sharp estimates. (Potapov, Sukochev, Skripka, Caspers, Montgomery-Smith, McDonald, Peller, ...)

MOIs are a powerful tool in analysis:

- $f(H + V) f(H) = T_{f^{[1]}}^{H+V,H}(V)$ (analogous to Duhamel's formula);
- $[f(H), V] = T_{f^{[1]}}^{H,H}([D, V]);$

•
$$\frac{d^n}{dt^n}|_{t=0}f(H+tV) = T^{H,...,H}_{f^{[n]}}(V,...,V),$$

each of which has been used to obtain sharp estimates. (Potapov, Sukochev, Skripka, Caspers, Montgomery-Smith, McDonald, Peller, ...)

Furthermore, MOIs can systematise operator integral techniques in NCG.

11/31

イロト 不得 トイヨト イヨト

A problem

If you write, like in *The Local Index Formula in Noncommutative Geometry* by Nigel Higson, for a spectral triple $(\mathcal{A}, \mathcal{H}, D)$ and $a \in \mathcal{A}$,

$$\begin{split} [D^{-2z},a] &= \left[\int_{\gamma} \lambda^{-z} (\lambda - D^2)^{-1} d\lambda, a\right] \\ &= \int_{\gamma} \lambda^{-z} [(\lambda - D^2)^{-1}, a] d\lambda \\ &= \int_{\gamma} \lambda^{-z} (\lambda - D^2)^{-1} [D^2, a] (\lambda - D^2)^{-1} d\lambda, \end{split}$$

then $[D^2, a] \notin B(\mathcal{H})$, so this is not a standard MOI.

Part 2: Abstract pseudodifferential calculus in the style of Connes–Moscovici, Higson, Guillemin

э

< □ > < □ > < □ > < □ > < □ >

Pseudodifferential operators

On \mathbb{R}^d , a differential operator $L = \sum_{|\alpha| \leq k} a_{\alpha}(x) \partial^{\alpha}$ can be written as

$$L = \mathcal{F}^{-1} \circ M_{p_L} \circ \mathcal{F},$$

where M_{p_L} indicates multiplying with the polynomial $p_L(x,\xi) := \sum_{|\alpha| \le k} a_{\alpha}(x)\xi^{\alpha}$.

イロト イヨト イヨト イヨト

Pseudodifferential operators

On \mathbb{R}^d , a differential operator $L = \sum_{|lpha| \leq k} a_lpha(x) \partial^lpha$ can be written as

$$L = \mathcal{F}^{-1} \circ M_{p_L} \circ \mathcal{F},$$

where M_{p_L} indicates multiplying with the polynomial $p_L(x,\xi) := \sum_{|\alpha| \le k} a_{\alpha}(x)\xi^{\alpha}$.

Generally speaking, a pseudodifferential operator of order k on \mathbb{R}^d is an operator of the form $L = \mathcal{F}^{-1} \circ M_{p_l} \circ \mathcal{F}$ where the function p_L is more general, such that

$$L: \mathcal{H}^{s+k,2} \to \mathcal{H}^{s,2},$$

where

$$\mathcal{H}^{s,2}(\mathbb{R}^n) := \{ f \in \mathcal{S}'(\mathbb{R}^n) : (1-\Delta)^{\frac{s}{2}} f \in L_2(\mathbb{R}^n) \},$$

are Bessel potential Sobolev spaces.

イロト 不得 トイヨト イヨト

Pseudodifferential operators

On \mathbb{R}^d , a differential operator $L = \sum_{|lpha| \leq k} a_lpha(x) \partial^lpha$ can be written as

$$L = \mathcal{F}^{-1} \circ M_{p_L} \circ \mathcal{F},$$

where M_{p_L} indicates multiplying with the polynomial $p_L(x,\xi) := \sum_{|\alpha| \le k} a_{\alpha}(x)\xi^{\alpha}$.

Generally speaking, a pseudodifferential operator of order k on \mathbb{R}^d is an operator of the form $L = \mathcal{F}^{-1} \circ M_{p_l} \circ \mathcal{F}$ where the function p_L is more general, such that

$$L: \mathcal{H}^{s+k,2} \to \mathcal{H}^{s,2},$$

where

$$\mathcal{H}^{s,2}(\mathbb{R}^n) := \{ f \in \mathcal{S}'(\mathbb{R}^n) : (1-\Delta)^{\frac{s}{2}} f \in L_2(\mathbb{R}^n) \},$$

are Bessel potential Sobolev spaces.

On a Riemannian manifold M, we can define classes of pseudodifferential operators on $L_2(M)$ that locally look like above.

14/31

イロト 不得 トイヨト イヨト 二日

Sobolev spaces

Given an invertible, positive self-adjoint operator Θ on a separable Hilbert space \mathcal{H} , we can define the 'Sobolev' spaces \mathcal{H}^s , $s \in \mathbb{R}$, as the completion of dom Θ^s under the norm

$$\|\xi\|_s^2 = \langle \xi, \xi \rangle_s := \langle \Theta^s \xi, \Theta^s \xi \rangle_{\mathcal{H}} = \|\Theta^s \xi\|^2, \quad \xi \in \operatorname{dom} \Theta^s$$

This forms a Hilbert space. We have continuous embeddings

$$\mathcal{H}^t \subseteq \mathcal{H}^s, \quad s \leq t,$$

because

$$\|\Theta^{s}\xi\| \leq \|\Theta^{s-t}\|_{\infty} \|\Theta^{t}\xi\|.$$

We put

$$\mathcal{H}^{\infty} := \bigcap_{s \in \mathbb{R}} \mathcal{H}^{s}, \quad \mathcal{H}^{-\infty} := \bigcup_{s \in \mathbb{R}} \mathcal{H}^{s},$$

and we get for free that \mathcal{H}^∞ is dense in $\mathcal{H}.$

< ロ > < 同 > < 回 > < 回 >

Analytic order

Even though Θ itself is an unbounded operator on $\mathcal H,$ if we regard it as an operator

$$\Theta: \mathcal{H}^1 \to \mathcal{H}^0 = \mathcal{H},$$

it is a perfectly good bounded operator:

$$\|\Theta\|_{\mathcal{H}^1
ightarrow \mathcal{H}^0} = \sup_{\xi: \|\Theta\xi\| \leq 1} \|\Theta\xi\| = 1.$$

< □ > < □ > < □ > < □ > < □ >

Analytic order

Even though Θ itself is an unbounded operator on $\mathcal H,$ if we regard it as an operator

$$\Theta: \mathcal{H}^1 \to \mathcal{H}^0 = \mathcal{H},$$

it is a perfectly good bounded operator:

$$\|\Theta\|_{\mathcal{H}^1
ightarrow \mathcal{H}^0} = \sup_{\xi: \|\Theta\xi\| \le 1} \|\Theta\xi\| = 1.$$

We define op^r(Θ) for $r \in \mathbb{R}$ as those $T : \mathcal{H}^{\infty} \to \mathcal{H}^{\infty}$ that extend to a bounded operator

$$T: \mathcal{H}^{s+r} \to \mathcal{H}^s, \quad s \in \mathbb{R}.$$

イロト イボト イヨト イヨト

Analytic order

Even though Θ itself is an unbounded operator on $\mathcal H,$ if we regard it as an operator

$$\Theta: \mathcal{H}^1 \to \mathcal{H}^0 = \mathcal{H},$$

it is a perfectly good bounded operator:

$$\|\Theta\|_{\mathcal{H}^1 \to \mathcal{H}^0} = \sup_{\xi: \|\Theta\xi\| \le 1} \|\Theta\xi\| = 1.$$

We define op^r(Θ) for $r \in \mathbb{R}$ as those $T : \mathcal{H}^{\infty} \to \mathcal{H}^{\infty}$ that extend to a bounded operator

$$\mathcal{T}:\mathcal{H}^{s+r}
ightarrow\mathcal{H}^{s},\quad s\in\mathbb{R}.$$

We define $OP'(\Theta)$ as those $T \in op^r(\Theta)$ for which $[\Theta, T] \in op^r(\Theta)$, $[\Theta, [\Theta, T]] \in op^r(\Theta), \ \delta^n_{\Theta}(T) \in op^r(\Theta)$.

イロト イボト イヨト イヨト

If Δ is the Laplace operator on ℝⁿ, setting Θ = (1 − Δ)^{1/2} gives the standard (Bessel potential) Sobolev spaces. The k-th order (pseudo)differential operators are contained in OP^k(Θ).

- If Δ is the Laplace operator on ℝⁿ, setting Θ = (1 − Δ)^{1/2} gives the standard (Bessel potential) Sobolev spaces. The k-th order (pseudo)differential operators are contained in OP^k(Θ).
- Taking $\Theta = (1 \Delta)^{1/2}$ where Δ is the sub-Laplacian on a stratified Lie group gives the Sobolev spaces defined by Folland and Stein.

< ロ > < 同 > < 回 > < 回 >

- If Δ is the Laplace operator on ℝⁿ, setting Θ = (1 − Δ)^{1/2} gives the standard (Bessel potential) Sobolev spaces. The k-th order (pseudo)differential operators are contained in OP^k(Θ).
- Taking $\Theta = (1 \Delta)^{1/2}$ where Δ is the sub-Laplacian on a stratified Lie group gives the Sobolev spaces defined by Folland and Stein.
- Can take Θ to be a harmonic oscilator, Kolmogorov operator, or a positive elliptic operator in any kind of pseudodifferential calculus.

< ロ > < 同 > < 回 > < 回 >

- If Δ is the Laplace operator on ℝⁿ, setting Θ = (1 − Δ)^{1/2} gives the standard (Bessel potential) Sobolev spaces. The k-th order (pseudo)differential operators are contained in OP^k(Θ).
- Taking $\Theta = (1 \Delta)^{1/2}$ where Δ is the sub-Laplacian on a stratified Lie group gives the Sobolev spaces defined by Folland and Stein.
- Can take Θ to be a harmonic oscilator, Kolmogorov operator, or a positive elliptic operator in any kind of pseudodifferential calculus.
- In NCG, given a spectral triple $(\mathcal{A}, \mathcal{H}, D)$ it makes sense to put $\Theta = (1 + D^2)^{1/2}$. Then for example $D \in OP^1(\Theta)$, and for a *regular* spectral triple $a, [D, a] \in OP^0(\Theta)$ for all $a \in \mathcal{A}$.

17/31

イロト イボト イヨト イヨト

- If Δ is the Laplace operator on ℝⁿ, setting Θ = (1 − Δ)^{1/2} gives the standard (Bessel potential) Sobolev spaces. The k-th order (pseudo)differential operators are contained in OP^k(Θ).
- Taking $\Theta = (1 \Delta)^{1/2}$ where Δ is the sub-Laplacian on a stratified Lie group gives the Sobolev spaces defined by Folland and Stein.
- Can take Θ to be a harmonic oscilator, Kolmogorov operator, or a positive elliptic operator in any kind of pseudodifferential calculus.
- In NCG, given a spectral triple $(\mathcal{A}, \mathcal{H}, D)$ it makes sense to put $\Theta = (1 + D^2)^{1/2}$. Then for example $D \in OP^1(\Theta)$, and for a *regular* spectral triple $a, [D, a] \in OP^0(\Theta)$ for all $a \in \mathcal{A}$.
- If Θ is bounded, $\mathcal{H}^s \simeq \mathcal{H}$ and $\operatorname{op}^r(\Theta) = B(\mathcal{H})$ for all $s, r \in \mathbb{R}$.

17/31

イロト 不得 トイヨト イヨト

Our goal is to construct MOIs where all operators are in $op(\Theta)$. First, we need a functional calculus for such operators. Analogously to usual notions of pseudodifferential operators, a functional calculus can be constructed for *elliptic* operators.

Our goal is to construct MOIs where all operators are in $op(\Theta)$. First, we need a functional calculus for such operators. Analogously to usual notions of pseudodifferential operators, a functional calculus can be constructed for *elliptic* operators.

We define $T \in op^{r}(\Theta)$ to be Θ -*elliptic*, if there is a parametrix $P \in op^{-r}(\Theta)$ such that

$$TP = 1_{\mathcal{H}^{\infty}} + op^{-\infty}(\Theta);$$

 $PT = 1_{\mathcal{H}^{\infty}} + op^{-\infty}(\Theta).$

By a Borel Lemma argument, it suffices if

$$TP = 1_{\mathcal{H}^{\infty}} + op^{-1}(\Theta);$$

 $PT = 1_{\mathcal{H}^{\infty}} + op^{-1}(\Theta).$

If $\Theta = (1 + D^2)^{1/2}$, then D is Θ -elliptic, and so is D + V if $V \in op^r$ with r < 1.

э

If $\Theta = (1 + D^2)^{1/2}$, then D is Θ -elliptic, and so is D + V if $V \in op^r$ with r < 1.

Let $T \in op^r(\Theta)$ be Θ -elliptic,

- If $x \in \mathcal{H}^{-\infty}$, then $Tx \in \mathcal{H}^s$ implies that $x \in \mathcal{H}^{s+r}$ (elliptic regularity).
- If T : H^r ⊆ H⁰ → H⁰ (i.e. r ≥ 0) is a symmetric operator, then it is self-adjoint. This situation will be referred to as 'T is Θ-elliptic and symmetric'.

If $\Theta = (1 + D^2)^{1/2}$, then D is Θ -elliptic, and so is D + V if $V \in op^r$ with r < 1.

Let $T \in op^r(\Theta)$ be Θ -elliptic,

- If $x \in \mathcal{H}^{-\infty}$, then $Tx \in \mathcal{H}^s$ implies that $x \in \mathcal{H}^{s+r}$ (elliptic regularity).
- If T : H^r ⊆ H⁰ → H⁰ (i.e. r ≥ 0) is a symmetric operator, then it is self-adjoint. This situation will be referred to as 'T is Θ-elliptic and symmetric'. Note: this does not imply that

$$T:\mathcal{H}^{r+s}\subseteq\mathcal{H}^s
ightarrow\mathcal{H}^s$$

is self-adjoint for any other $s \in \mathbb{R}$. In fact, these operators need not even be symmetric or normal.

イロト 不得 トイヨト イヨト

Functional calculus

We write $f \in L^{\beta}_{\infty}(\mathbb{R})$ for some $\beta \in \mathbb{R}$ if $f(x)(1+x^2)^{-\beta/2} \in L_{\infty}(\mathbb{R})$.

э

Functional calculus

We write $f \in L^{\beta}_{\infty}(\mathbb{R})$ for some $\beta \in \mathbb{R}$ if $f(x)(1+x^2)^{-\beta/2} \in L_{\infty}(\mathbb{R})$.

H.-McDonald-van Nuland (2024)

Let $T \in op^{r}(\Theta)$, r > 0, be Θ -elliptic and symmetric. If $f \in L^{\beta}_{\infty}(\mathbb{R})$, then

 $f(T) \in op^{r\beta}(\Theta).$

EM. Hekkelman	(UNSW)	
---------------	--------	--

э

Functional calculus

We write $f \in L^{\beta}_{\infty}(\mathbb{R})$ for some $\beta \in \mathbb{R}$ if $f(x)(1+x^2)^{-\beta/2} \in L_{\infty}(\mathbb{R})$.

H.-McDonald-van Nuland (2024)

Let $T \in op^{r}(\Theta)$, r > 0, be Θ -elliptic and symmetric. If $f \in L^{\beta}_{\infty}(\mathbb{R})$, then

 $f(T) \in \operatorname{op}^{r\beta}(\Theta).$

Furthermore, if A is self-adjoint on \mathcal{H} , $A \in op^t(\Theta)$, $t \in \mathbb{R}$, and A commutes strongly with T, then for $f \in L^{\beta}_{\infty}(\mathbb{R})$, $\beta \geq 0$, we have

 $f(A) \in \operatorname{op}^{t\beta}(\Theta).$

This second part applies for example to $i\frac{d}{dx}$ in $op(1-\Delta)^{1/2}$ on \mathbb{R}^d .

20/31

< ロ > < 同 > < 回 > < 回 >

Part 3: MOIs as pseudodifferential operators

2

Unbounded MOIs

H.-McDonald-van Nuland (2024)

Let $H_i \in \operatorname{op}^{h_i}(\Theta)$, $h_i > 0$ Θ -elliptic and symmetric for $i = 0, \ldots, n$, and $X_i \in \operatorname{op}^{r_i}(\Theta)$ for $i = 1, \ldots, n$. Let $\phi : \mathbb{R}^{n+1} \to \mathbb{C}$ such that

$$\phi(\lambda_0,\ldots,\lambda_n)=\int_\Omega a_0(\lambda_0,\omega)\cdots a_n(\lambda_n,\omega)d
u(\omega),$$

with finite measure space (Ω, ν) with $a_j(x, \omega)(1 + x^2)^{-\beta_j/2} : \mathbb{R} \times \Omega \to \mathbb{C}$ measurable and bounded. Then for $\psi \in \mathcal{H}^{\infty}$,

$$T_{\phi}^{H_0,\ldots,H_n}(X_1,\ldots,X_n)\psi := \int_{\Omega} a_0(H_0,\omega)X_1a_1(H_1,\omega)\cdots X_na_n(H_n,\omega)\psi d
u(\omega)$$

is a well-defined vector in \mathcal{H}^∞ independent of the representation of $\phi,$ and

$$T^{H_0,\ldots,H_n}_{\phi}: \operatorname{op}^{r_1}(\Theta) imes \cdots imes \operatorname{op}^{r_n}(\Theta) o \operatorname{op}^{\sum_j r_j + \sum_j \beta_j h_j}(\Theta).$$

< □ > < 同 > < 回 > < 回 >

Unbounded MOIs: the useful bit

If $f \in C^{n+2}(\mathbb{R})$, and $f^{(k)} \in L^{\beta-k}_{\infty}(\mathbb{R})$ for k = 0, ..., n+2, then for $H \in \operatorname{op}^{h}(\Theta)$, h > 0 Θ -elliptic and symmetric, and $X_{i} \in \operatorname{op}^{r_{i}}(\Theta)$,

$$T_{f^{[n]}}^{H,\ldots,H}(X_1,\ldots,X_n)\in \bigcap_{\varepsilon>0} \operatorname{op}^{(\beta-n)h+\sum_j r_j+\varepsilon}(\Theta).$$

If $f \in C^{\infty}(\mathbb{R})$ and $f^{(k)} \in L^{\beta-k}_{\infty}(\mathbb{R})$ for all $k \in \mathbb{N}$, we write $f \in S^{\beta}(\mathbb{R})$.

Unbounded MOIs: the useful bit

If $f \in C^{n+2}(\mathbb{R})$, and $f^{(k)} \in L^{\beta-k}_{\infty}(\mathbb{R})$ for k = 0, ..., n+2, then for $H \in \operatorname{op}^{h}(\Theta)$, h > 0 Θ -elliptic and symmetric, and $X_{i} \in \operatorname{op}^{r_{i}}(\Theta)$,

$$T_{f^{[n]}}^{H,\ldots,H}(X_1,\ldots,X_n)\in \bigcap_{\varepsilon>0} \operatorname{op}^{(\beta-n)h+\sum_j r_j+\varepsilon}(\Theta).$$

If $f \in C^{\infty}(\mathbb{R})$ and $f^{(k)} \in L^{\beta-k}_{\infty}(\mathbb{R})$ for all $k \in \mathbb{N}$, we write $f \in S^{\beta}(\mathbb{R})$. The integral we saw earlier,

$$\int_{\gamma} \lambda^{-z} (\lambda - D^2)^{-1} [D^2, a] (D^2 - \lambda)^{-1} d\lambda = T_{f^{[1]}}^{D^2, D^2} ([D^2, a]),$$

with $f(x) = x^{-z}$.

(日)

Two rules

MOIs as we defined them come with two identities:

•
$$f(A) - f(B) = T_{f^{[1]}}^{A,B}(A - B);$$

2
$$[f(H), a] = T_{f^{[1]}}^{H,H}([H, a]),$$

2

Two rules

MOIs as we defined them come with two identities:

•
$$f(A) - f(B) = T_{f^{[1]}}^{A,B}(A - B);$$

$$[f(H), a] = T_{f^{[1]}}^{n, n}([H, a]),$$

and the higher order analogues (since $T_{f^{[0]}}^H() = f(H)$)

•
$$T_{f^{[n]}}^{H_0,...,A,...,H_n}(V_1,...,V_n) - T_{f^{[n]}}^{H_0,...,B,...,H_n}(V_1,...,V_n)$$

= $T_{f^{[n+1]}}^{H_0,...,A,B,...,H_n}(V_1,...,A-B,...,V_n);$

$$T_{f^{[n]}}^{H_0,\ldots,H_n}(V_1,\ldots,V_{j-1},aV_j,\ldots,V_n) - T_{f^{[n]}}^{H_0,\ldots,H_n}(V_1,\ldots,V_{j-1}a,V_j,\ldots,V_n) = T_{f^{[n+1]}}^{H_0,\ldots,H_j,H_j,\ldots,H_n}(V_1,\ldots,V_{j-1},[H_j,a],V_{j+1},\ldots,V_n).$$

2

Taylor expansion

The first rule on its own gives a Taylor expansion:

$$f(H+V) \stackrel{(1)}{=} f(H) + T_{f^{[1]}}^{H+V,H}(V)$$
$$\stackrel{(1)}{=} f(H) + T_{f^{[1]}}^{H,H}(V) + T_{f^{[2]}}^{H+V,H,H}(V,V),$$

and repeat. We get for all $N \in \mathbb{N}$

$$f(H+V) = \sum_{n=0}^{N} T_{f^{[n]}}^{H,\ldots,H}(V,\ldots,V) + T_{f^{[N+1]}}^{H+V,H,\ldots,H}(V,\ldots,V).$$

Note: if H and V commute,

$$T_{f^{[n]}}^{H,...,H}(V,...,V) = \frac{1}{n!}f^{(n)}(H)V^{n}.$$

25/31

Commutator expansion

In similar manner, by rule (2) we get

$$T_{f^{[n]}}^{H,\ldots,H}(V_1,\ldots,V_n) = V_1 T_{f^{[n]}}^{H,\ldots,H}(1,V_2,\ldots,V_n) + T_{f^{[n+1]}}^{H,\ldots,H}([H,V],1,V_2,\ldots,V_n),$$

repeating and remembering that $T^{H,\dots,H}_{f^{[n]}}(1,\dots,1)=rac{1}{n!}f^{(n)}(H)$, we get

$$T_{f^{[n]}}^{H,...,H}(V_1,...,V_n) = \sum_{m=0}^{N} \sum_{\substack{m_1+\cdots+m_n=m}} \frac{C_{m_1,...,m_n}}{(n+m)!} \delta_H^{m_1}(X_1) \cdots \delta_H^{m_n}(X_n) f^{(n+m)}(H) + S_{H,V}^N.$$

э

イロン イ団 とく ヨン イヨン

Commutator expansion

In similar manner, by rule (2) we get

$$T_{f^{[n]}}^{H,\ldots,H}(V_1,\ldots,V_n) = V_1 T_{f^{[n]}}^{H,\ldots,H}(1,V_2,\ldots,V_n) + T_{f^{[n+1]}}^{H,\ldots,H}([H,V],1,V_2,\ldots,V_n),$$

repeating and remembering that $T^{H,\dots,H}_{f^{[n]}}(1,\dots,1)=rac{1}{n!}f^{(n)}(H)$, we get

$$T_{f^{[n]}}^{H,...,H}(V_1,...,V_n) = \sum_{m=0}^{N} \sum_{\substack{m_1+\cdots+m_n=m}} \frac{C_{m_1,...,m_n}}{(n+m)!} \delta_H^{m_1}(X_1) \cdots \delta_H^{m_n}(X_n) f^{(n+m)}(H) + S_{H,V}^N.$$

The combinatorics to get this expression is exactly the same as how one gets the cocycle of the local index formula, writing $A^{(k)} := \delta_{D^2}^n(A)$,

$$\phi_n(a_0,\ldots,a_n) = \sum_{|k|,q\geq 0} c_{n,k,q} \operatorname{Res}_{z=0} z^q \operatorname{Tr}\left(a_0[D,a_1]^{(k_1)}\cdots[D,a_n]^{(k_n)}|D|^{-2|k|-2z-n}\right),$$

E.-M. Hekkelman (UNSW)

イロト 不得 トイヨト イヨト

Asymptotic expansions

We say that $T \sim \sum_{k=0}^{\infty} T_k$ for $T, T_k \in \mathsf{op}(\Theta)$ if

$$T-\sum_{k=1}^N T_k\in {
m op}^{m_N}(\Theta), \quad m_N\downarrow -\infty.$$

2

イロト イヨト イヨト イヨト

Asymptotic expansions

We say that $T\sim \sum_{k=0}^{\infty} T_k$ for $T,\,T_k\in \mathsf{op}(\Theta)$ if

$$T-\sum_{k=1}^N T_k\in {
m op}^{m_N}(\Theta), \quad m_N\downarrow -\infty.$$

If $f \in S^{\beta}(\mathbb{R})$, if $H \in op^{h}(\Theta)$, h > 0 is Θ -elliptic and symmetric, and if $V \in op^{r}(\Theta)$ with r < h, then

$$f(H+V)\sim \sum_{n=0}^{\infty}T^{H,\ldots,H}_{f^{[n]}}(V,\ldots,V).$$

イロト 不得 トイヨト イヨト

Asymptotic expansions

We say that $T\sim \sum_{k=0}^{\infty} T_k$ for $T,\,T_k\in \mathsf{op}(\Theta)$ if

$$T-\sum_{k=1}^N T_k\in {
m op}^{m_N}(\Theta), \quad m_N\downarrow -\infty.$$

If $f \in S^{\beta}(\mathbb{R})$, if $H \in op^{h}(\Theta)$, h > 0 is Θ -elliptic and symmetric, and if $V \in op^{r}(\Theta)$ with r < h, then

$$f(H+V)\sim \sum_{n=0}^{\infty}T_{f^{[n]}}^{H,\ldots,H}(V,\ldots,V).$$

With mild assumptions on the commutators $\delta_{H}^{n}(V)$,

$$f(H+V)\sim \sum_{n,m=0}^{\infty}\sum_{m_1+\cdots+m_n=m}\frac{C_{m_1,\ldots,m_n}}{(n+m)!}\delta_H^{m_1}(V)\cdots\delta_H^{m_n}(V)f^{(n+m)}(H).$$

(日)

A familiar expansion

Recall that

$$[f(\Theta), X] = T_{f^{[1]}}^{\Theta, \Theta}([\Theta, X]).$$

Therefore, for $X \in OP^{r}(\Theta)$, the expansions on the last slide give

$$[f(\Theta), X] \sim \sum_{k=1}^{\infty} \frac{1}{k!} \delta_{\Theta}^k(X) f^{(k)}(\Theta).$$

э

A familiar expansion

Recall that

$$[f(\Theta), X] = T_{f^{[1]}}^{\Theta, \Theta}([\Theta, X]).$$

Therefore, for $X \in OP^{r}(\Theta)$, the expansions on the last slide give

$$[f(\Theta), X] \sim \sum_{k=1}^{\infty} \frac{1}{k!} \delta_{\Theta}^k(X) f^{(k)}(\Theta).$$

In particular,

$$[\Theta^{\alpha}, X] \sim \sum_{k=1}^{\infty} \binom{\alpha}{k} \delta_{\Theta}^{k}(X) \Theta^{\alpha-k}, \quad \alpha \in \mathbb{C},$$

and

$$[\log(\Theta), X] \sim \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} \delta_{\Theta}^k(X) \Theta^{-k},$$

and we have that $[\Theta^{\alpha}, X] \in OP^{r+\Re(\alpha)-1}(\Theta)$ and $[\log(\Theta), X] \in OP^{r-1}(\Theta)$.

Asymptotic trace expansions

H.-McDonald-van Nuland (2024)

Let $(\mathcal{A}, \mathcal{H}, D)$ be a regular s-summable spectral triple $((1 + D^2)^{-1/2} \in \mathcal{L}_s)$. Let V self-adjoint and bounded, generated by \mathcal{A} and D. Then as $t \to 0$,

$$\operatorname{Tr}(f(tD + tV))$$

$$= \sum_{n=0}^{N} \sum_{m=0}^{N} \sum_{m_1+\dots+m_n=m}^{N} t^{n+m} \frac{C_{m_1,\dots,m_n}}{(n+m)!} \operatorname{Tr}(\delta_D^{m_1}(V) \cdots \delta_D^{m_n}(V) f^{(n+m)}(tD))$$

$$+ O(t^{N+1-s}).$$

< □ > < 同 > < 回 > < 回 >

Bonus: Functional calculus for OP

If $A \in op^{r}(\Theta)$ is Θ -elliptic and symmetric, then by rule (2) we know that for $f \in L^{\beta}_{\infty}(\mathbb{R})$

$$egin{aligned} &f(\mathcal{A})\in \mathsf{op}^{\scriptscriptstyle \mathcal{P}^{r}}(\Theta),\ &[\Theta,f(\mathcal{A})]=\mathcal{T}^{\mathcal{A},\mathcal{A}}_{f^{[1]}}([\Theta,\mathcal{A}]), \end{aligned}$$

and similar expressions hold for $\delta^n_{\Theta}(f(A))$. If $A \in OP^r(\Theta)$, then we can deduce what the order is of these expressions if $f \in S^{\beta}(\mathbb{R})$, so that

$$\delta^n_{\Theta}(f(A))\in igcap_{arepsilon>0} {
m op}^{reta+arepsilon}(\Theta).$$

We therefore conclude that $f(A) \in \bigcap_{\varepsilon > 0} \operatorname{OP}^{r\beta + \varepsilon}(\Theta)$.

30/31

< ロ > < 同 > < 回 > < 回 >

Thanks

Thank you for your attention!

EM.	Hekkelma	n (UNSW)
-----	----------	----------

2