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Summary of this talk

@ Motivation for studying MOls
@ Pseudodifferential calculus
© MOlIs of pseudodifferential operators

This talk is based on joint work with Ed McDonald and Teun van Nuland.
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Part 1: Motivation
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Exhibit A

We use the Chern character of (A, 'H, D) in entire cyclic cohomology (cf. [2])
given in the most efficient manner by the JLO formula, which defines the com-
ponents of an entire cocycle in the (b, B) bicomplex:

(90) tn(a®,...,a") =V2i [
Zuf:l,t'\{,:_?D
o
Trace (ao e~vD? [D,a"] emnD? | gmvniD? [D,a™] e_”“Dz) : Ya' € A

where n is odd.

We introduce a parameter e by replacing D? by eD?, which yields a cocycle ¥
which is eohomologous to ¥,,. One has moreover

(01)  ¥i(a®...,a") =V2i /n (€ vo,...,ev,) T dv; | €2,
Zl'a:l
1}
From [ConnesMoscovicil995]
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Exhibit B

Let us now show that if b € N Dom L*RY then b € Dom §. The proof is more
subtle than one would expect, because the obvious argument, using

D =7"" fox % w M du
requires some care. Indeed, one gets from the above
UDL b =n"! ff(Dg ) DR (D 4 )t
We can replace [D?,b] by |D|, which has the same size, and get
/nx(DZ +p) D) dp = f)‘xtl F1) 22 g

For this to work, we need to move [D?, 8] in front of the above integral, i.e. use
the finiteness of the norm of
f‘ (D% 4 )" [D26] (D) w2 dpe
0 —_—
—(D2 ) 1D, [D2 (D)

This finiteness follows from:

1) (D% +p)~! [D?,[D?,b] bounded since b € Dom L?

2) [5FI(D® + ) 2 w2 dp £ € fy @2 dp [ ¥ dp < oo

Onee [D?,b] is moved in front the above caleulation applies.

From [ConnesMoscovici1995]
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Exhibit C

Now, onwards with the computation, the first part of which is straightforward:

A% AlB = L,J?\”[[)\ —A) ,AlBdA
2mi

:L.JA ZA—A)TAAIA—A) B dA
2mi

:J?\ EA—A) TAAB(A—A) Tar

+ JA BA—A) A AIA—A) TABI(A—A) TdA.
(In the last step we did two things at once: we commuted B past (A — A) ' and we
then used the formula [S ', T] = S '[T,S|S ') The operators [A, A] and [A, B]
have orders 1 and 2, respectively.
Before going on, we shall introduce some better notation for our contour inte-

grals.

2.5 Definition. If Dy, ..., D, are differential operators on the closed manifold M,
then denote by I.(Dy, ..., Dy) the integral
1

—_JA’ZDO[}\ — AT DR(A - A) T aA
2mi

(in the integral, copies of (A — A)~ alternate with the operators Dj). The integral
converges if Re(z) < n, in the sense we discussed above, and defines an operator
on C*(M].

From [Higson2003]
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Exhibit D

Theorem 4.2 (Semifinite Odd Local Index Theorem). Let (A, H, D) be an odd finitely sum-
mable QC™ spectral triple with spectral dimension p > 1. Let N = [p/2] + 1 where [-] denotes
the integer part, and let w € A be unitary. Then

1) sf(D,u*Du) = ﬁresr:(l_p)/g (E'rz?::_llodd ¢:’n(C'11.m(u)))

where for ag, ...,am € A, l={a+iv:ve R}, 0<a<1/2, RN = (A= (1+s*+D%) ! and
r > 0 we define @], (ag, a1, ..., am) to be

—2/2mi %qﬂu 1 —pf2-r, a ...[D.a s
—r((—m+1>/2)fo i ’(%f ./f MNP A P '"]RS(A)dA)d'

In particular the sum on the right hand side of 1) analytically continues to a deleted neighbour-
hood of r = (1 — p)/2 with at worst a simple pole at r = (1 — p)/2. Moreover, the complex
function-valued cochain (é;.b)?;\;‘ladd is a (b, B) cocycle for A modulo functions holomorphic in
a half-plane containing r = (1 — p)/2.

From [CareyPhillipsRennieSukochev2006]
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Exhibit E

Let us introduce the following convenient notation (cf. [10]). If Ay, ..., A, are operators,
we define a t-dependent quantity by

(A0, -y Al = " T['[ Aoe—.m!DzAle—sﬂDz . -Ane_—_s',,tl)2 d"s. (3)
An

Note the difference in notation with [10], for which the same symbol is used for the supertrace of
the same expression, rather than the trace. Also, we are integrating over the ‘inflated” n-simplex
tA", yielding the factor ". The forms (Ag, ..., A,) satisty, mutafis mutandis, the following
properties.

Lemma 7. (See [10].) In each of the following cases, we assume that the operators A; are such
that each term is well defined:

(Ao, ..., An ),,:(A(,...,A,,,. A D
(Ao, ..., Anin Z U“‘ s Aiy AnsAUsH'«Af—l)n;
Y oAy (DAL Ay —

(AU!"‘s[ngAj-l....‘A )ﬂ =

An)n—]-

b S

(AU;---‘A 1Aiss s At — (Aos s AjAigr, s

From [vanSuijlekom2011]
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Multiple operator integrals

Let ¢ : R™! — C be such that
qb()\o,...,)\,,):/ao()\o,w)~--a,,(/\,,,w)du(w),
Q

with finite measure space (€, ) and measurable and bounded a; : R x Q — C.
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Multiple operator integrals

Let ¢ : R™1 — C be such that
qb()\o,...,)\,,):/an()\o,w)~--a,,(/\,,,w)du(w),
with finite measure space (€, ) and measurable and bounded a; : R x Q — C.
Let Ho, ..., H, be self-adjoint, for Vy,..., V, € B(#) define the MOI
Tt (v, Vo)
= [ ao(bh.)Viar(Hh,) - Voan o) dv(), o € M.
Then,
Tt B(H) x -+ x B(H) — B(H)

and this does not depend on how we represent ¢ (its symbol).
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Divided differences

Symbols of MOIls encountered in the wild are almost always divided differences,
which are defined recursively for f € C"(R) as
FOION) = F(N);
(N, M) — AP A)
N Ao — An ’

Il (X, ..o An)
with an appropriate limit if Ag = A,. In particular,

1
mf(”)(/\) = (A, N).
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Example MOls

For example the JLO cocycle is

/ Tr(naoe_t"Dz[D, ale t0" ... [D, a,,]e_t"Dz)dt

= Tr(nao T2 ([D, 1], - -, [D, an])),

with f(x) = exp(—x).
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Why you should care

MOQIs are a powerful tool in analysis:

E.-M. Hekkelman (UNSW) The Joy of MOls June 26 2024 12/32



Why you should care

MOQIs are a powerful tool in analysis:
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Why you should care

MOQIs are a powerful tool in analysis:

o f(H+V)—f(H)= T:I[HJ“V’H(V) (analogous to Duhamel's formula);

o [f(H), V]=T/"([D, V]);

o LF(H+tV)|eo =Tl "(V,..., V),
each of which has been used to obtain sharp estimates. (Potapov, Sukochev,
Skripka, Caspers, Montgomery-Smith, McDonald, Peller, ...)
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Vo
Why you should care

MOQIs are a powerful tool in analysis:

o f(H+V)—f(H)= T:I[HJ“V’H(V) (analogous to Duhamel's formula);

o [f(H), V]=T/"([D, V]);

o LF(H+tV)|eo =Tl "(V,..., V),

each of which has been used to obtain sharp estimates. (Potapov, Sukochev,
Skripka, Caspers, Montgomery-Smith, McDonald, Peller, ...)

Furthermore, MOls can systematise operator integral techniques in NCG.
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A problem

If you write, like in The Local Index Formula in Noncommutative Geometry by
Nigel Higson, for a spectral triple (A, H, D) and a € A,

[D7% a] = [/AZ(/\ D?)7ld)\ a
:/)\‘Z[()\ — D)1, a]dA

_ / A~2(A— D)1 [D?, a](A — D?)ld,

then [D?, a] & B(H), so this is not a standard MOI.
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Pseudodifferential calculus

Part 2: Abstract pseudodifferential calculus
in the style of Connes—Moscovici, Higson, Guillemin
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Pseudodifferential operators

On R9, a differential operator L = 2 la|<k 3a(X)0% can be written as
L=F"1toM, oF,

where M), indicates multiplying with the polynomial p(x, &) := 3, <k 2a(x)§°.
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Pseudodifferential operators

On R9, a differential operator L = 2 la|<k 3a(X)0% can be written as
L=F"1toM, oF,

where M), indicates multiplying with the polynomial p(x, &) := 3, <k 2a(x)§°.

Generally speaking, a pseudodifferential operator of order k on R? is an operator
of the form L= F~ 1o M,, o F where the function p; is more general, such that

. +k,2 2
L:H® — H>7,

where

HP2(R") == {f € S'(R") : F (1 + [¢) /2 Ff] € L(R")},

are Bessel potential Sobolev spaces.
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Pseudodifferential calculus

Pseudodifferential operators

On R9, a differential operator L = 2 la|<k 3a(X)0% can be written as
L=F"1toM, oF,

where M), indicates multiplying with the polynomial p(x, &) := 3, <k 2a(x)§°.

Generally speaking, a pseudodifferential operator of order k on R? is an operator
of the form L= F~ 1o M,, o F where the function p; is more general, such that

. +k,2 2
L:H® — H>7,

where
HP2(R") == {f € S'(R") : F (1 + [¢) /2 Ff] € L(R")},

are Bessel potential Sobolev spaces.

On a Riemannian manifold M, we can define classes of pseudodifferential
operators on Ly(M) that locally look like above.
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Sobolev spaces
Given an invertible, positive self-adjoint operator © on a separable Hilbert space

‘H, we can define the 'Sobolev’ spaces H?, s € R, as the completion of dom ©°
under the norm

€13 = (6, €)s = (©°¢,©°C)n = |©%¢|%, € € dom©”.
This forms a Hilbert space. We have continuous embeddings
HECH, s<t,

because

9%l < 107 [loo 1O%]I-

00 . r\lyis, ?{—aa:::LdJ?{s7

seR seR

We put

and we get for free that > is dense in H.
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Analytic order

Even though © itself is an unbounded operator on H, if we regard it as an operator

O:H - H =4,
it is a perfectly good bounded operator:

1@l 30 = sup [|O]| = 1.
glegl<1
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Analytic order

Even though © itself is an unbounded operator on H, if we regard it as an operator
O:H - H =4,
it is a perfectly good bounded operator:

1@l 30 = sup [|O]| = 1.
glegl<1

We define op”(©) for r € R as those T : H™ — H° that extend to a bounded

operator
T:HT S H, seR.
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Analytic order

Even though © itself is an unbounded operator on H, if we regard it as an operator
O:H - H =4,
it is a perfectly good bounded operator:

1@l 30 = sup [|O]| = 1.
glegl<1

We define op”(©) for r € R as those T : H™ — H° that extend to a bounded

operator
T:HT S H, seR.

We define OP"(©) as those T € op"(©) for which [©, T] € op’(©),
[©,[8, Tl € 0p"(©), 3&(T) € 0p"(©)).
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Examples

o If A is the Laplace operator on R”, setting © = (1 — A)'/? gives the
standard (Bessel potential) Sobolev spaces. The k-th order
(pseudo)differential operators are contained in OP*(©).
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Pseudodifferential calculus

Examples

o If A is the Laplace operator on R”, setting © = (1 — A)'/? gives the
standard (Bessel potential) Sobolev spaces. The k-th order
(pseudo)differential operators are contained in OP*(©).

o Taking © = (1 — A)Y2 where A is the sub-Laplacian on a stratified Lie
group gives the Sobolev spaces defined by Folland and Stein.
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Examples

o If A is the Laplace operator on R”, setting © = (1 — A)'/? gives the
standard (Bessel potential) Sobolev spaces. The k-th order
(pseudo)differential operators are contained in OP*(©).

o Taking © = (1 — A)Y2 where A is the sub-Laplacian on a stratified Lie
group gives the Sobolev spaces defined by Folland and Stein.

e For a spectral triple (A, #, D) it makes sense to put © = (14 D?)Y/2. Then
for example D € OP(©), and for a regular spectral triple a,[D, a] € OP°(©)
for all a € A.
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Examples

o If A is the Laplace operator on R”, setting © = (1 — A)'/? gives the
standard (Bessel potential) Sobolev spaces. The k-th order
(pseudo)differential operators are contained in OP*(©).

o Taking © = (1 — A)Y2 where A is the sub-Laplacian on a stratified Lie
group gives the Sobolev spaces defined by Folland and Stein.

e For a spectral triple (A, #, D) it makes sense to put © = (14 D?)Y/2. Then
for example D € OP(©), and for a regular spectral triple a,[D, a] € OP°(©)
for all a € A.

o If © is bounded, H* ~ H and op’(©) = B(H) for all s,r € R,
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Pseudodifferential calculus

Elliptic operators

Our goal is to construct MOls where all operators are in op(®). First, we need a
functional calculus for such operators. Analogously to usual notions of

pseudodifferential operators, a functional calculus can be constructed for elliptic
operators.
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Pseudodifferential calculus

Elliptic operators

Our goal is to construct MOls where all operators are in op(®). First, we need a
functional calculus for such operators. Analogously to usual notions of

pseudodifferential operators, a functional calculus can be constructed for elliptic
operators.

We define T € op”(©) to be elliptic, if there is a parametrix P € op~'(©) such
that

TP = 1y +op~>(0©);
PT = 140 + 0p~>°(0©).

By a Borel Lemma argument, it suffices if

TP = 1y~ +op }(©);
PT = 1y~ +op *(0©).
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Elliptic operators 2

For any spectral triple (A, H, D) and © = (1 + D?)}/2, we have that D € op*(©)
is elliptic. Furthermore, D + V is elliptic if V € op” with r < 1.
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Pseudodifferential calculus

Elliptic operators 2

For any spectral triple (A, H, D) and © = (1 + D?)'/2, we have that D € op'(9)
is elliptic. Furthermore, D + V is elliptic if V € op” with r < 1.

If T €op"(©) is elliptic,

o If x € H™>°, then Tx € H? implies that x € H™" (elliptic regularity).

o If T:H" CH®— HO (i.e. r>0)isasymmetric operator, then it is
self-adjoint. This situation will be referred to as ‘T is elliptic and symmetric'.

E.-M. Hekkelman (UNSW) The Joy of MOls June 26 2024 20/32



Elliptic operators 2

For any spectral triple (A, H, D) and © = (1 + D?)}/2, we have that D € op*(©)
is elliptic. Furthermore, D + V is elliptic if V € op” with r < 1.

If T €op"(©) is elliptic,

o If x € H™>°, then Tx € H? implies that x € H™" (elliptic regularity).

o If T:H" CH®— HO (i.e. r>0)isasymmetric operator, then it is
self-adjoint. This situation will be referred to as ‘T is elliptic and symmetric'.
Note: this does not imply that

T:Hr+ngs*>Hs

is self-adjoint for any other s € R. In fact, these operators need not even be
symmetric or normal.
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Pseudodifferential calculus

Functional calculus

We write f € L2 (R) for some 8 € R if £(x)(1 + x?)7#/2 € Loo(R).
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Pseudodifferential calculus

Functional calculus

We write f € L2 (R) for some 8 € R if £(x)(1 + x?)7#/2 € Loo(R).
H.—McDonald—van Nuland (2024)

Let T € op”(©), r > 0, be elliptic and symmetric. If f € L (R), then

f(T) e op’ﬂ(@).
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Pseudodifferential calculus

Functional calculus

We write f € L2 (R) for some 8 € R if £(x)(1 + x?)7#/2 € Loo(R).
H.—McDonald—van Nuland (2024)
Let T € op"(©), r > 0, be elliptic and symmetric. If f € LZ (R), then

f(T) e op’ﬁ(@).
Furthermore, if A is self-adjoint on H, A € op’(©), t € R, and A commutes
strongly with T, then for f € L2 (R), 8 > 0, we have

f(A) € opt?(©).

This second part applies for example to i< in op(1 — A)'/2 on RY.
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MOIs as pseudodifferential operators

Part 3: MOIs as pseudodifferential operators
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Unbounded MOIs

H.—McDonald-van Nuland (2024)

Let H; € op"(®), h; > 0 elliptic and symmetric for i = 0,...,n, and X; € op"(©)
fori=1,...,n Let ¢:R" — C such that

qb()\o,...,)\,,):/an()\o,w)~--a,,()\,,,w)du(w),

with finite measure space (Q,r) with a;(x,w)(1 +x?)%/2: R x Q — C
measurable and bounded. Then for ¢ € H™>,

TP (X, Xa )y ::/ao(Ho,w)Xlal(Hl,w)~--X,,a,,(H,,,w)z/)dZ/(w)
Q

is a well-defined vector in H*° independent of the representation of ¢, and

T(:;’”"“’H" - op™(©) X - x 0p™(©) — op2i T2 Fiki (@),
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MOIs as pseudodifferential operators

Unbounded MOlIs: the useful bit

If f € C"*2(R), and ) € LB-K(R) for k =0,...,n+2, then for H € op”(©),
h > 0 elliptic and symmetric, and X; € op"(©),

T:I[;]"-,H(Xh o, Xn) € ﬂ op(fB*”)thEj 1e(0).
e>0

If £ € C(R) and f(K) € LA-K(R) for all k € N, we write f € S#(R).
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Unbounded MOlIs: the useful bit

If f € C"*2(R), and ) € LB-K(R) for k =0,...,n+2, then for H € op”(©),
h > 0 elliptic and symmetric, and X; € op"(©),

T:I[n}"vH(Xl, o, Xn) € ﬂ op(fB*”)thEj 1e(0).

e>0

If £ € C(R) and f(K) € LA-K(R) for all k € N, we write f € S#(R).

The integral we saw earlier,

/)\*Z()\ ~ D?) D2, (D% — A) A = TP (D2, ),

with f(x) = x~2.
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MOIs as pseudodifferential operators

Two rules

MOIs as we defined them come with two identities:
Q f(A)—f(B) = T/f(A- B);

@ [f(H),al = TH([H, a]).
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MOIs as pseudodifferential operators

Two rules

MOIs as we defined them come with two identities:
Q f(A)—f(B) = T/f(A- B);
@ [f(H),a] = T7i"([H,a]),

and the higher order analogues (since T/ () = f(H))

O TH Aty V) = T Bty )

_ 7Ho,..,A,B,...,H, .
= T "(Va,..., A= B,...,V);

@ T/ (i, Vit aV, L Ve = Tt (v, Vita, v

fln]
Ho,...,H;,Hj,...,Hn
= Tf[n+1] s (V].,...,\/j,]_,["lj,a],\/j+1,...,\/,—,).
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MOIs as pseudodifferential operators

Taylor expansion

The first rule on its own gives a Taylor expansion:

F(H+ V) 2 F(H) + THVA(y)

a
D F(H) + THH (V) + THVHHY V),
and repeat. We get for all N ¢ N
f(H+ V) Z i V) TR v,
Note: if H and V commute,

TV, V) = = (H) v,
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MOIs as pseudodifferential operators

Commutator expansion

In similar manner, by rule (2) we get

TH (Ve Vo) = VT (1 Vo Vo) + T (I, V)L Vo, Vi),
repeating and remembering that Tf[n] Ha,...,1) = %f(")(H), we get
- ¢
Tgln] (V17 ey Vn) = Z Z Mi,...,Mpy 5m1 (Xl) 6gn(Xn)f(n+m)(H)

(n+ m)!

m=0 my+---+mp=m

+Si v
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Commutator expansion
In similar manner, by rule (2) we get
TPV, V) = T (@ Vo, Vo) + T (H, V)L L Vs, V),

repeating and remembering that Tfl_lln’]“"H(l, L) = %f(”)(H), we get

N
Cm1u~~7mn my my n+m
Tt v, vy =>" Y méH (X1) - 0 (X)) FrEm (H)

m=0 m+---+mp=m

+SH v

The combinatorics to get this expression is exactly the same as how one gets the
cocycle of the local index formula, writing AK) := 67, (A),

on(ag, .-, an)

= Y CrkgRes;—ozTr (ao[D, a1]) ... [D, an](k")|D|_2lk‘_22_") )
[kl,a=0
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Asymptotic expansions

We say that T ~ Y72 Ty for T, Ty € op(®©) if

N
T - Z Ty € 0p™(©), mp | —oo.
k=1
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Asymptotic expansions

We say that T ~ Y72 Ty for T, Ty € op(®©) if
N
T — Z Tx € 0p™(©), my | —oc.
k=1

If f € SA(R), if H € op"(©), h > 0 is elliptic and symmetric, and if V € op’(©)
with r < h, then

oo

FIH+ V)~ Tar(v,. .. v).
n=0

If furthermore 67,(V) € op™*"("=¢) for some & > 0 (for example H = ©, V € OP")

o0
Cm yeeeyMp n n+m
Tar (Ve VI 3 D0 e (V) S (VIFTT(H).
m=0 mi+---+mp,=m :
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Asymptotic expansions

We say that T ~ Y72 Ty for T, Ty € op(®©) if
N
T - Z Ty € 0p™(©), mp | —oo.

If f € SA(R), if H € op"(©), h > 0 is elliptic and symmetric, and if V € op’(©)
with r < h, then

oo

FIH+ V)~ Tar(v,. .. v).
n=0

If furthermore 67,(V) € op™*"("=¢) for some & > 0 (for example H = ©, V € OP")
o0
C
TV, V)~ S g (V) 5T (V)T (H),
flnl ( ) ) ) n;]m1+,;,,:m(n+m) 5 ( ) 6H( ) ( )

Combined,

o]
C
f(H+ V)~ Z Z M(5’"1( )...5ﬂn(v)f(n+m)(H).
n,m=0 my+---+mp=m (n+m)!
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A familiar expansion

Recall that

[F(©), X] = TE,°(18, X])-

Therefore, for X € OP"(©), the expansions on the last slide give

[£(0), X1 ~ Y 106(X)r (@),

k=1
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MOIs as pseudodifferential operators

A familiar expansion

Recall that
[F(©), X] = T2 ([0, X]).

Therefore, for X € OP"(©), the expansions on the last slide give

[£(0), X1 ~ Y 106(X)r (@),

In particular,
[, X1~y (‘;‘) 55(X)0* k. aec,
k=1
and .
o0 _1 -1
log(©). X1 ~ 3~ 5008,
k=1

and we have that [0, X] € OP""R(®)~1(©) and [log(©), X] € OP"~}(©).
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MOIs as pseudodifferential operators

Asymptotic trace expansions

H.—McDonald—van Nuland (2024)

Let (A, H, D) be a regular s-summable spectral triple ((1+ D?)~/2 € L,). Let V
self-adjoint and bounded, generated by A and D. Then as t — 0,

N N c

- M M Ty (5 (V). g (V) FE (6D
nz:g,;mﬁ.;nn:m (n+ m)! r(0pH(V) -+ 35" (V) (tD))
+ O(tN*179).
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MOIs as pseudodifferential operators

Bonus: Functional calculus for OP

If A€ op’(©) is elliptic and symmetric, then by rule (2) we know that for
f e Ll (R)
f(A) € 0p”'(©),
[0, f(A)] = T7'([0, A,

and similar expressions hold for §&(f(A)). If A€ OP"(©), then we can deduce
what the order is of these expressions if f € S#(R), so that

58(f(A) € [ op**(O).

e>0

We therefore conclude that f(A) € (.., OP"*<(@).
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MOIs as pseudodifferential operators

Thank you for your attention!
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