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Introduction

Spectral action

Describing nature by use of a self-adjoint operator D, the spectrum of D
contains much information about the physics of the system. A good way
of studying the spectrum and these physics is by considering

Tr(f (D))

or
Tr(f (D + V )),

for a suitable function f : R → C, and a suitable self-adjoint operator V .

For example, describing the universe as a carefully constructed spectral
triple (A,H,D), the entire Lagrangian of the standard model can be
derived in this manner.
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Introduction

Taylor expansion

If f is smooth enough, a naive way to analyse Tr(f (D + V )) is to perform
a Taylor expansion of the function t 7→ Tr(f (D + tV )) around t = 0:

Tr(f (D + V )) =?
∞∑
n=0

1

n!

dn

dtn

∣∣∣∣
t=0

Tr(f (D + tV ))

=!?
∞∑
n=0

Tr

(
1

n!

dn

dtn

∣∣∣∣
t=0

f (D + tV )

)
.

What on earth is 1
n!

dn

dtn

∣∣
t=0

f (D + tV )?
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MOIs in a nutshell

Part 1: MOIs in a nutshell
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MOIs in a nutshell

Origins of the MOI

Suppose we have two self-adjoint operators A,B. Can we make sense of
dn

dtn

∣∣
t=0

f (A+ tB)? For which functions f and which restrictions on A and
B?

Yes, MOIs can help us understand. For ϕ : Rn+1 → C, V1, . . . ,Vn ∈ B(H)
and self-adjoint operators H0, . . . ,Hn with spectral measures dEj we define
corresponding multiple operator integral as

TH0,...,Hn

ϕ (V1, . . . ,Vn) :=

ˆ
σ(H0)×···×σ(Hn)
ϕ(λ0, . . . , λn)dE0(λ0)V1dE1(λ1) · · ·VndEn(λn).

Then for possibly unbounded self-adjoint A, bounded self-adjoint B,

dn

dtn

∣∣∣∣
t=0

f (A+ tB) = TA,...,A

f [n]
(B, . . . ,B︸ ︷︷ ︸

n

),

if the right hand side is defined. Note: for n = 0 we have TA
f () = f (A).
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MOIs in a nutshell

The MOI game

To understand dn

dtn

∣∣
t=0

f (A+ tB), we now have to determine when

TH0,...,Hn

ϕ (V1, . . . ,Vn) =

ˆ
σ(H0)×···×σ(Hn)
ϕ(λ0, . . . , λn)dE0(λ0)V1dE1(λ1) · · ·VndEn(λn)

is well-defined.

From a connection with Schur multiplier theory, for ϕ ∈ L∞ we have that

TH0,...,Hn

ϕ : L2 × · · · × L2 → L2

is well-defined.
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MOIs in a nutshell

Separation of variables

As we have already seen, if we can write

ϕ(λ0, . . . , λn) =

ˆ
Ω
a0(λ0, ω) · · · an(λn, ω)dν(ω),

then

TH0,...,Hn

ϕ (V1, . . . ,Vn)

=

ˆ
σ(H0)×···×σ(Hn)
ϕ(λ0, . . . , λn)dE0(λ0)V1dE1(λ1) · · ·VndEn(λn)

=

ˆ
Ω

( ˆ
σ(H0)

a0(λ0, ω)dE0(λ0)

)
V1 · · ·Vn

( ˆ
σ(Hn)

an(λn, ω)dEn(λn)

)
dν(ω)

=

ˆ
Ω
a0(H0, ω)V1a1(H1, ω) · · ·Vnan(Hn, ω)dν(ω),

if the right-hand side is defined. Note that this operator will only depend
on ϕ, not on the representation in terms of functions aj !
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MOIs in a nutshell

Bounded MOIs

Peller (2005), Birman–Solomyak (1967)

If ϕ : Rn+1 → C is such that ϕ ∈ BS, which means that

ϕ(λ0, . . . , λn) =

ˆ
Ω
a0(λ0, ω) · · · an(λn, ω)dν(ω);

ˆ
Ω
∥a0(·, ω)∥∞ · · · ∥an(·, ω)∥∞d |ν|(ω) <∞,

then for V1, . . . ,Vn ∈ B(H) and self-adjoint operators H0, . . . ,Hn

ψ 7→
ˆ
Ω
a0(H0, ω)V1a1(H1, ω) · · ·Vnan(Hn, ω)ψdν(ω), ψ ∈ H,

is a well-defined bounded operator on H. Hence for such ϕ,

TH0,...,Hn

ϕ : B(H)× · · · × B(H) → B(H).
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MOIs in a nutshell

Commutators

MOIs come with many useful identities, which can then be applied in
various contexts. An example:

(z − H)−1V = V (z − H)−1 + [(z − H)−1,V ]

= V (z − H)−1 + (z − H)−1[H,V ](z − H)−1.

As before, f is holomorphic, taking a contour integral we can write

TH
f [n]

(V1, . . . ,Vn) =
1

2πi

ˆ
Γ
f (z)(z − H)−1V1(z − H)−1 · · ·Vn(z − H)−1dz ,

and therefore, if [H, a] is a bounded operator,

TH
f [n]

(aV1,V2, . . .Vn) = aTH
f [n]

(V1,V2, . . . ,Vn)

+ TH
f [n+1]([H, a],V1,V2, . . . ,Vn).

This formula holds for non-holomorphic f too.
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MOIs in a nutshell

A slice of life

In NCG, the JLO cocycle plays a role in the proof of the Connes–Moscovici
local index theorem, and is defined for a0, . . . , an ∈ B(H), n even, as

Ψn(a0, . . . , an) = Tr

(
ηa0

ˆ
∆n

e−t0D2
[D, a1]e

−t1D2 · · · [D, an]e−tnD2
dt

)
.

Here ∆n is the standard n-simplex, and D is an unbounded self-adjoint
operator (coming from a spectral triple (A,H,D)).

Figure: by Teun van Nuland
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MOIs in a nutshell

JLO as MOI

From the MOI perspective, we can write the JLO cocycle as

Tr

(
ηa0

ˆ
∆n

e−t0D2
[D, a1]e

−t1D2 · · · [D, an]e−tnD2
dt

)
= Tr(ηa0T

D2

f [n]
([D, a1], . . . , [D, an])),

with f (x) = exp(−x). Using this observation we can greatly simplify some
proofs of ...
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MOIs in a nutshell

Local index formula

The Connes–Moscovici local index formula is a generalisation of the
Atiyah–Singer index theorem to noncommutative geometry. We write
V (m) = [D2, [D2, [· · · , [D2,V ] · · · ]].

Connes–Moscovici

Let (A,H,D) be a spectral triple (plus technical conditions). For n odd,

ϕn(a0, . . . , an) a0, . . . , an ∈ A

=
∑

|k|,q≥0

cn,k,q Resz=0 z
qTr

(
a0[D, a1]

(k1) · · · [D, an](kn)|D|−2|k|−2z−n
)

defines a (b,B)-cocycle whose cohomology class in HC odd(A) coincides
with the cyclic cohomology Chern character ch∗(A,H,D).
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MOIs in a nutshell

Problem

There is just one problem, however.

The intermediate steps would involve expressions like

TD2

f [n]
([D2,V1],V2, . . . ,Vn),

where V1, . . . ,Vn ∈ B(H), but [D2,V1] is an unbounded operator!
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Pseudodifferential calculus

Part 2: Connes–Moscovici’s pseudodifferential calculus
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Pseudodifferential calculus

Sobolev spaces

Given a densely defined, invertible self-adjoint operator Θ on a Hilbert
space H, we can define the ‘Sobolev’ spaces Hs , s ∈ R, as the completion
of domΘs under the norm

∥ξ∥2s = ⟨ξ, ξ⟩s := ⟨Θsξ,Θsξ⟩H = ∥Θsξ∥2, ξ ∈ domΘs .

This forms a Hilbert space. It follows from the assumptions that

H∞ :=
⋂
s∈R

Hs

is dense in H.
We have continuous embeddings

Ht ⊆ Hs , s ≤ t,

because
∥Θsξ∥ ≤ ∥Θs−t∥∞∥Θtξ∥.
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Pseudodifferential calculus

Analytic order

Even though Θ itself is an unbounded operator on H, if we regard it as an
operator

Θ : H1 → H0 = H,

it is a perfectly good bounded operator:

∥Θ∥H1→H0 = sup
ξ:∥Θξ∥≤1

∥Θξ∥ = 1.

We can define opr (Θ) for r ∈ R as those operators T on H such that
H∞ ⊆ domT , TH∞ ⊆ H∞, and T extends to a bounded operator

T : Hs+r → Hs , s ∈ R.

Note that opr (Θ) ⊆ opt(Θ) for r ≤ t, and opr (Θ) · opt(Θ) ⊆ opr+t(Θ).
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Pseudodifferential calculus

Examples

In a classical setting, if ∆ is the Laplace operator on the Euclidean
space Rn, setting Θ = (1 +∆)1/2 precisely gives the classical Sobolev
spaces

Hs,2(Rn) := {f ∈ S ′(Rn) : F−1
[
(1 + |ξ|2)s/2F f

]
∈ L2(Rn)},

where F is the Fourier transform.
The k-th order (pseudo)differential operators are contained in opk(Θ).

If Θ is itself a bounded operator on H, then Hs ≃ H for all s, and
opr (Θ) = B(H) for all r .

In noncommutative geometry, one has a spectral triple (A,H,D), and
one usually takes Θ = (1 + D2)1/2. Then for example D ∈ op1(Θ),
and for a regular spectral triple a, [D, a] ∈ op0(Θ) for all a ∈ A.
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Unbounded MOIs

Part 3: MOIs as pseudodifferential operators
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Unbounded MOIs

Unbounded MOIs

Suppose we have a function

ϕ(λ0, . . . , λn) =

ˆ
Ω
a0(λ0, ω) · · · an(λn, ω)dν(ω).

How can we make sense of

TH0,...,Hn

ϕ (V1, . . . ,Vn) =

ˆ
Ω
a0(H0, ω)V1a1(H1, ω) · · ·Vnan(Hn, ω)dν(ω),

when Vi ∈ opri (Θ)?

Observe: if aj(Hj , ω) ∈ op0(Θ), the integrand is a bounded operator
Hs+r1+···+rn → Hs for each s ∈ R.
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Unbounded MOIs

Main construction

H., McDonald, van Nuland, Sukochev, Zanin (WIP)

Let H0, . . . ,Hn be self-adjoint operators on H with spectral measures dEj .
Let ϕ : Rn+1 → C. For Vi ∈ opri (Θ),

TH0,...,Hn

ϕ (V1, . . . ,Vn)

=

ˆ
ϕ(λ0, . . . , λn)dE0(λ0)V1dE1(λ1) · · ·VndEn(λn),

is a well-defined operator

1 in opr1+···+rn(Θ) if Hj , [Θ,Hj ] ∈ ophj (Θ) and ϕ ∈ BS∞;

2 in opr1+···+rn(Θ) if each Hj strongly commutes with Θ and ϕ ∈ BS;

3 in opr1+···+rn+n s
2 (Θ) if each Hj strongly commutes with Θ, Θ−1 ∈ Ls

for some 0 < s <∞, and ϕ ∈ L∞.
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Unbounded MOIs

Cases 2 and 3

A quick way to prove cases 2 and 3, is by writing for Vi ∈ opri (Θ)

TH0,...,Hn

ϕ (V1, . . . ,Vn) = TH0,...,Hn

ϕ (V1Θ
−r1Θr1 ,V2, . . . ,

Vn).
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Unbounded MOIs
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Unbounded MOIs
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On the RHS, the MOI has bounded arguments.

Case 3 works similarly, if Θ−1 ∈ Ls , then Θ−s/2 ∈ L2 and we can employ
the MOI definition for Hilbert–Schmidt operators.
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Unbounded MOIs

Unbounded symbols

It is possible to also include unbounded symbols ϕ.

H., McDonald, van Nuland, Sukochev, Zanin (WIP)

Let H0, . . . ,Hn be self-adjoint operators in ophj (Θ). For Vi ∈ opri (Θ),
P(λ0, . . . , λn) = λk00 · · ·λknn , k ∈ Z≥0 in each case listed before,

TH0,...,Hn

Pϕ (V1, . . . ,Vn) = TH0,...,Hn

ϕ (Hk0
0 V1H

k1
1 , . . . ,VnH

kn
n )

extends the constructions of the MOI given before.
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Unbounded MOIs

Asymptotic expansion

By applying identities like

TD2

f [n]
(V1,V2, . . .Vn) = V1T

D2

f [n]
(1,V2, . . . ,Vn)

+ TD2

f [n+1]([D
2,V1], 1,V2, . . . ,Vn).

a million times (which is now possible!), one gets the formal expression
(using multi-index notation and V (m) = [D2, [· · · , [D2,V ] · · · ])

T
(tD)2

f [n]
(V1, . . . ,Vn) ∼

∞∑
|m|=0

t2|m|CmV
(m1)
1 · · ·V (mn)

n T
(tD)2

f [n+|m|](1, . . . , 1)

=
∞∑

|m|=0

t2|m| Cm

(n + |m|)!
V

(m1)
1 · · ·V (mn)

n f (n+|m|)(t2D2).

Of course, this only makes sense if we can say something about the
remainder terms.
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Unbounded MOIs

Local index formula

This expansion demystifies the local index formula

ϕn(a0, . . . , an)

=
∑

|k|,q≥0

cn,k,q Resz=0 z
qTr

(
a0[D, a1]

(k1) · · · [D, an](kn)|D|−2|k|−2z−n
)

as being related to the expansion of

a0T
D2

f
[n]
n
([D, a1], . . . , [D, an])

for fn(x) = xn/2, but can also be used to prove new results.
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Unbounded MOIs

Existence of asymptotic expansions

H., McDonald, van Nuland, Sukochev, Zanin (WIP)

Let (A,H,D) be an s-summable spectral triple (i.e. (1 + D2)−1/2 ∈ Ls ,
s > 0) and denote the algebra of operators generated by A and D by B.
Let V ∈ B be self-adjoint and bounded. If Tr(Pe−t2D2

) admits an
asymptotic expansion as t → 0 for each operator P ∈ B, then

Tr(Pe−t2(D+V )2)

also admits an asymptotic expansion as t → 0 for each P ∈ B, given by

Tr(Pe−t2(D+V )2) ∼
∞∑
n=0

n∑
k=0

∞∑
|m|=0

(−1)n+|m|

(n + |m|)!
t2(n+|m|)−1cn,kCm

× Tr
(
PD0,kV

(m1)D1,k · · ·V (mn)Dn,ke
−t2D2)

.
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Unbounded MOIs

Thanks

Thank you for your attention!
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