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Summary of this talk

@ MOIs in a nutshell
@ Pseudodifferential calculus
© MOlIs as pseudodifferential operators

This talk is based on work in progress with Teun van Nuland.

PhD supervisors: Fedor Sukochev (main), Edward McDonald and Dmitriy
Zanin.
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Introduction

Spectral action

Describing nature by use of a self-adjoint operator D, the spectrum of D
contains much information about the physics of the system. A good way
of studying the spectrum and these physics is by considering

Tr(f(D))

or
Tr(f(D + V)),

for a suitable function f : R — C, and a suitable self-adjoint operator V.
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Introduction

Spectral action

Describing nature by use of a self-adjoint operator D, the spectrum of D
contains much information about the physics of the system. A good way
of studying the spectrum and these physics is by considering

Tr(f(D))

or
Tr(f(D + V)),

for a suitable function f : R — C, and a suitable self-adjoint operator V.

For example, describing the universe as a carefully constructed spectral
triple (A, H, D), the entire Lagrangian of the standard model can be
derived in this manner.
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Introduction

Taylor expansion

If f is smooth enough, a naive way to analyse Tr(f(D + V)) is to perform

a Taylor expansion of the function t — Tr(f(D + tV)) around t = 0:

CUCETIES S

S| T(F(D+ V)

n=0 t=0
e 1d"
="y T <n!dtn ) f(D+tV)>.
n=0 t=0
What on earth is n, dt" _of(D+tV)?
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MOls in a nutshell

Part 1: MOIs in a nutshell
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MOls in a nutshell

Origins of the MOl

Suppose we have two self-adjoint operators A, B. Can we make sense of
& +—of (A+ tB)? For which functions f and which restrictions on A and
B?
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Origins of the MOl

Suppose we have two self-adjoint operators A, B. Can we make sense of

& +—of (A+ tB)? For which functions f and which restrictions on A and

B?

Yes, MOls can help us understand. For ¢ : R"*t — C, V4,...,V, € B(H)
and self-adjoint operators Hp, ..., H, with spectral measures dE; we define
corresponding multiple operator integral as

TtV V) = [ 6(Xos- ., An)dEo(Mo) VidEL(Ar) -+ VadEn(As).
o(Ho)x-+-xo(Hn)
Then for possibly unbounded self-adjoint A, bounded self-adjoint B,
dn
dtn

F(A+tB) = T/"(B, ..., B),

n

if the right hand side is defined.

E. Hekkelman (UNSW) Unbounded MOls September 13 2023 6/27



Origins of the MOl

Suppose we have two self-adjoint operators A, B. Can we make sense of

& +—of (A+ tB)? For which functions f and which restrictions on A and

B?

Yes, MOls can help us understand. For ¢ : R"*t — C, V4,...,V, € B(H)
and self-adjoint operators Hp, ..., H, with spectral measures dE; we define
corresponding multiple operator integral as

T v, Ve = [ d(o, - An)dEo(Ao) VAdEL (A1) - - - VadEn(An).-
o(Ho)x-+-xo(Hn)

Then for possibly unbounded self-adjoint A, bounded self-adjoint B,

d" A A
F(A+tB) = TAA(B,...,B),
| A =T B

n

if the right hand side is defined. Note: for n = 0 we have TA() = f(A).
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The MOI game

To understand %

+—of (A+ tB), we now have to determine when

T (Ve V) = [ 6(Xos- - An)dEo(Xo) VadEL (A1) -+ - VadEn(An)
o(Ho)xxo(Hn)

is well-defined.

From a connection with Schur multiplier theory, for ¢ € L., we have that

Ho,...,H
T¢°’ T Lo X e X Lo — Lo
is well-defined.
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MOls in a nutshell

Separation of variables

As we have already seen, if we can write

d(Aoy ...y Ap) = / ap(Ao,w) -+ - ap(Ap, w)dv(w),
Q
then

TP (v, V)

= [ 6000, . An)dEo(Ao) VadEL (A1) -+ VidEn(An)

O'(H())X'”XO'E n

/Q </0(HO) ao()\o,w)dEo()\o)) Vi V,,</U(Hn) a,,()\,,,w)dEn()\n)> dv(w)

:/ao(Ho,w)Vlal(Hl,w)---V,,a,,(H,,,w)dV(w),
Q

if the right-hand side is defined. Note that this operator will only depend

on ¢, not on the representation in terms of functions a;!
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Bounded MOls

Peller (2005), Birman—Solomyak (1967)
If ¢ : R™1 — C is such that ¢ € BS, which means that

d(Noy -y An) = /an(Ao,w)~--a,,()\,,,w)dy(w);
| an(e)le -l ol ) < o
then for V4, ..., V, € B(H) and self-adjoint operators Hy, ..., Hy
P /an(Ho,w) Viai(Hi,w) -+ Vpan(Hp,w)drv(w), o € H,

is a well-defined bounded operator on H. Hence for such ¢,

THo-H . B(H) x - x B(H) — B(H).
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MOls in a nutshell

Commutators

MOIs come with many useful identities, which can then be applied in
various contexts. An example:

(z—H)W=Vz-H)1+[(z-H) V]
=V(z—H) '+ (z— H)YH, V](z— H)L.

As before, f is holomorphic, taking a contour integral we can write

1
T[[’n](vl, V) = P / f(2)(z— H) Wi(z—= H) ™1 Vy(z — H) tdz,
Tl r

and therefore, if [H, a] is a bounded operator,

TH(aVi, Va, ... Vo) = aTHy(Vi, Va, ..., Vi)
+ T;—[I"‘*'l]([H’ a]? V17 V2, ey Vn)

This formula holds for non-holomorphic f too.
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MOls in a nutshell

A slice of life

In NCG, the JLO cocycle plays a role in the proof of the Connes—Moscovici
local index theorem, and is defined for ag,...,a, € B(#), n even, as

V,(ag,...,a,) = Tr <7730/ e ®2’[D, ay]e 1P ... D, a,,]e_t"Dzdt> :
Ap

Here A, is the standard n-simplex, and D is an unbounded self-adjoint
operator (coming from a spectral triple (A, H, D)).
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A slice of life

In NCG, the JLO cocycle plays a role in the proof of the Connes—Moscovici
local index theorem, and is defined for ag,...,a, € B(#), n even, as

V,(ag,...,a,) = Tr (7730/ e ®2’[D, ay]e 1P ... D, a,,]e_t"Dzdt) :
Ap

Here A, is the standard n-simplex, and D is an unbounded self-adjoint
operator (coming from a spectral triple (A, H, D)).

Figure: by Teun van Nuland
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JLO as MOl

From the MOI perspective, we can write the JLO cocycle as

Tr <7730/ e—t0D2[D, 31]e_t1D2 ---[D, an]e_t"Dzdt>
Ap
2
= TI‘(’I?QO Tf?n]([Dv a1]7 SRR [Da an]))’

with f(x) = exp(—x). Using this observation we can greatly simplify some
proofs of ...
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MOls in a nutshell

Local index formula

The Connes—Moscovici local index formula is a generalisation of the

Atiyah—Singer index theorem to noncommutative geometry. We write
v(m) = [D? [D?,[---,[D? V]---]].

Connes—Moscovici

Let (A, H, D) be a spectral triple (plus technical conditions). For n odd,

on(a0, .-, an) ag,...,anc€ A
= Y cokgRes;gz9Tr (aO[D, ag]*) .. [D, an](kn)\o\—2\k\—22—")
|k|,q>0

defines a (b, B)-cocycle whose cohomology class in HC°d4(_A) coincides
with the cyclic cohomology Chern character ch.(A, H, D).
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MOls in a nutshell

Problem

There is just one problem, however.

The intermediate steps would involve expressions like
f["]([D Vl] V2a"'7v)7

where V4, ..., V,, € B(H), but [D?, V4] is an unbounded operator!
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Pseudodifferential calculus

Part 2: Connes—Moscovici’s pseudodifferential calculus
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Pseudodifferential calculus

Sobolev spaces

Given a densely defined, invertible self-adjoint operator © on a Hilbert
space H, we can define the ‘Sobolev' spaces H®, s € R, as the completion
of dom ©° under the norm

I]12 = (€,€)s = (©°€,0°¢)y = |©%¢|?, ¢ € dom ©°.
This forms a Hilbert space. It follows from the assumptions that
= ﬂ S
seR

is dense in H.
We have continuous embeddings

HECH®, s<t,

because

1%l < 187"l [©%¢].
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Analytic order

Even though © itself is an unbounded operator on H, if we regard it as an
operator

©:H - H =H,
it is a perfectly good bounded operator:

1@lls 30 = sup [[©¢]| =1.
&lleg)<1

We can define op”(©) for r € R as those operators T on H such that
H>® Cdom T, TH™® C H*>, and T extends to a bounded operator

T:HT —H, scR.

Note that op”(©) C op*(®) for r < t, and op”(®) - 0p*(©) C op"T*(O).
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Pseudodifferential calculus

Examples

@ In a classical setting, if A is the Laplace operator on the Euclidean
space R”, setting © = (1 + A)1/2 precisely gives the classical Sobolev

spaces
H2(R") == {f € S'(R") : F (1 + |¢*)*/2FF] € Lo(R")},

where F is the Fourier transform.
The k-th order (pseudo)differential operators are contained in op*(®).
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Pseudodifferential calculus

Examples

@ In a classical setting, if A is the Laplace operator on the Euclidean
space R”, setting © = (1 + A)1/2 precisely gives the classical Sobolev
spaces

HO2(R™) = {f € S'(R") : F (1 +[¢])2Ff] € [o(R")},

where F is the Fourier transform.
The k-th order (pseudo)differential operators are contained in op*(®).

o If © is itself a bounded operator on #H, then ‘H* ~ H for all s, and
op"(©) = B(H) for all r.
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Pseudodifferential calculus

Examples

@ In a classical setting, if A is the Laplace operator on the Euclidean
space R”, setting © = (1 + A)1/2 precisely gives the classical Sobolev
spaces

HO2(R™) = {f € S'(R") : F (1 +[¢])2Ff] € [o(R")},

where F is the Fourier transform.
The k-th order (pseudo)differential operators are contained in op*(®).

o If © is itself a bounded operator on #H, then ‘H* ~ H for all s, and
op"(©) = B(H) for all r.
@ In noncommutative geometry, one has a spectral triple (A, H, D), and

one usually takes © = (1 + D?)'/2. Then for example D € op'(0),
and for a regular spectral triple a, [D, a] € op%(®) for all a € A.
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Unbounded MOls

Part 3: MOIs as pseudodifferential operators
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Unbounded MOIs

Suppose we have a function

qb()\o,...,)\,,):/an(/\o,w)--~a,,()\,,,w)du(w).

How can we make sense of

T(;-/O,...,Hn(vl, vy, Vi) = /

q ao(Ho,w) Vlal(Hl,w) e V,,a,,(Hn,w)dV(w),

when V; € op”i(©)?
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Unbounded MOIs

Suppose we have a function

qﬁ()\o,...,)\,,):/an(/\o,w)--~a,,()\,,,w)du(w).
How can we make sense of

T th(vy, V) = /an(Ho,w)Vlal(Hl,w) <+« Voap(Hn, w)dv(w),

when V; € op”i(©)?
Observe: if a;(H;,w) € op®(©), the integrand is a bounded operator

Hstnttrm s 345 for each s € R.
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Unbounded MOls

Main construction

H., McDonald, van Nuland, Sukochev, Zanin (WIP)

Let Ho, ..., H, be self-adjoint operators on H with spectral measures dE;.
Let ¢ : R™1 — C. For V; € op"(©),

is a well-defined operator
Q in opttt(@) if H;, [©, Hj] € op™(©) and ¢ € BG™;
Q@ in op Tt (@) if each H; strongly commutes with © and ¢ € BES;

Q in opr1+"'+r"+"%(@) if each H; strongly commutes with ©, ©71 € £,
for some 0 < s < 00, and ¢ € L.
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Cases 2 and 3

A quick way to prove cases 2 and 3, is by writing for V; € op’i(©)

T (Vo) =TI (4076
V,).
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Cases 2 and 3

A quick way to prove cases 2 and 3, is by writing for V; € op’i(©)

T (Vi V) = TR (e e,
V,).
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Cases 2 and 3

A quick way to prove cases 2 and 3, is by writing for V; € op’i(©)

THoHnyy vy = THoH(vie—n @nv,en—nente
¢ ¢
V,,).
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Cases 2 and 3

A quick way to prove cases 2 and 3, is by writing for V; € op’i(©)

Tt vy V) = Tt (e enve e

@nttm-1 Vn@—r1—~~—rn)@rl—&-m—&-rn.
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Cases 2 and 3

A quick way to prove cases 2 and 3, is by writing for V; € op"i(O)

T (v V) = Tt (e enve T,

@nttr-1 Vn@—r1—~~—rn)@r1+~~+rn.
On the RHS, the MOI has bounded arguments.

Case 3 works similarly, if ©~1 € L, then ©~%/2 € £, and we can employ
the MOI definition for Hilbert—-Schmidt operators.
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Unbounded MOls

Unbounded symbols

It is possible to also include unbounded symbols ¢.

H., McDonald, van Nuland, Sukochev, Zanin (WIP)

Let Hy,.

.., H, be self-adjoint operators in op™(@). For V; € op"(©),
P()o, ..

S An) = AL - Mk € Zsg in each case listed before,

TR t(vy, o V) = TP (HO VI HE LV, HE)

extends the constructions of the MOI given before.
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Unbounded MOls

Asymptotic expansion
By applying identities like

T

f‘[n](V17 VZ,Vn): V].Tf'[n](]' V2, ,V)

M([D2 Vil, 1, Va,..., V).

a million times (which is now possible!), one gets the formal expression
(using multi-index notation and V(™) = [D? [--- | [D?,V]---])

m m mn D)2
Tf([n])(vl,..., Z 2 C Vi i TUDY (1 1)
|m|=0
=y @ml Cmym) ) fnsim (2 p2)
S U LD !

Of course, this only makes sense if we can say something about the

remainder terms.
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Unbounded MOls

Local index formula

This expansion demystifies the local index formula

®n(ao, .-, an)
— Z Cn k,q Resz—o z9Tr (ao[D, al](kl) ---[D, an](k")\D|*2‘k‘*2Z*">
|kl,g>0

as being related to the expansion of
2
20T2)([D, a1, [D, a))

for f,(x) = x™/2, but can also be used to prove new results.
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Unbounded MOls

Existence of asymptotic expansions

H., McDonald, van Nuland, Sukochev, Zanin (WIP)

Let (A, H, D) be an s-summable spectral triple (i.e. (14 D?)~'/2 ¢ L,
s > 0) and denote the algebra of operators generated by A and D by 5.
Let V € B be self-adjoint and bounded. If Tr(Pe~t"2?) admits an
asymptotic expansion as t — 0 for each operator P € B, then

Tr(Pet'(P+V)%)
also admits an asymptotic expansion as t — 0 for each P € B, given by

yrtml

TI‘(P —t2(D+V ZZ Z + |m| 2(n+|m\)—1cn’ka

n=0 k=0 |m|= 0
X Tr(PDo g VI™)Dy jo - VM) D, e 0%,

4
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Thanks

Thank you for your attention!
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