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Introduction

Ingredients of this talk

1 Essence of noncommutative geometry

2 A hint of physics

3 Multiple operator integrals

This talk is based on work in progress with Teun van Nuland, Fedor
Sukochev and Dmitriy Zanin.
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Introduction

Part 1: Noncommutative Geometry
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Noncommutative Geometry

Differential geometry

Imagine that we are interested in some geometric object X .

We can study this as a Riemannian manifold, which is to say a (compact)
topological space X where we keep track of things like:

The distance between points in the space;

The curvature at each point;

A sense of ‘straight lines’ (geodesics).

Eva-Maria Hekkelman The noncommutative space we live in August 11 2023 4 / 26



Noncommutative Geometry

Algebraic geometry?

Let us take a different perspective, considering instead the continuous
functions

f : X → C.

We can give this the structure of an algebra, with the pointwise operations

(f + g)(x) = f (x) + g(x);

(fg)(x) = f (x)g(x), x ∈ X .

With the norm ∥f ∥ = supx∈X |f (x)| and involution f ∗(x) = f (x) this
forms a unital commutative C ∗-algebra.

Other examples of C ∗-algebras are the matrices Mn(C) and B(H), the
bounded operators on a Hilbert space.
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Noncommutative Geometry

Translations

If we have a subset A ⊂ X , then

{f ∈ C (X ) : f |A ≡ 0}

forms an ideal in C (X ). In fact, we have the following translations:

Subsets ⇒ ideals;

Points ⇒ maximal ideals;

Connected components ⇒ projections (read: a function that only
takes values 0 and 1).

And many more!
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Noncommutative Geometry

Gelfand duality

In fact, this connection is very strong.

Gelfand duality (1940s)

Every unital commutative C ∗-algebra A is of the form A = C (X ) for a
compact Hausdorff space X , and this correspondence is one-to-one. (Even
better, this is a dual equivalence of categories.)

This means that all topological data of X is contained in C (X ). But we
lose all geometric data.
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Noncommutative Geometry

A different approach

Can one hear the shape of a drum?

Figure: Mark Kac, Center for Nonlinear Studies.
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Noncommutative Geometry

Hearing the shape of a drum

The sounds a drum produces are those λ ∈ C for which the PDE{
∆u = λu on X ;

u|∂X = 0

has a solution (Helmholtz equation). Here ∆ is the Laplace–Beltrami
operator, the manifold equivalent of the differential operator −

∑n
j=1 ∂

2
xj
.

This is an unbounded operator on the Hilbert space

L2(X ) = {f : X → C :

ˆ
X
|f (x)|2dvol(x) < ∞},

and these λ are the eigenvalues of ∆.

The question asks whether we can reconstruct our Riemannian manifold X
from the data (L2(X ),∆), in particular, from these eigenvalues of the
operator ∆ (this is called spectral geometry).
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Noncommutative Geometry

What we can hear

Weyl’s law (1910s)

Let X be a compact Riemannian manifold of dimension d . Let N(t) be
the number of eigenvalues (counting multiplicities) of ∆ with absolute
value less than t. Then as t → ∞,

N(t) =
ωd

(2π)d
Vol(X )td/2 − ωd−1

4(2π)d−1
Area(∂X )t(d−1)/2 + o(t(d−1)/2).
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Noncommutative Geometry

What we cannot hear

Figure: Isospectral drums.
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Noncommutative Geometry

Spectral triples

C (X ) gives us topological data, but no geometrical data. For (L2(X ),∆)
it is the other way around.

Combined, the triple (C (X ), L2(X ),∆) seems promising!

We can make these data ‘talk’ to each other by representing C (X ) as
operators on the Hilbert space L2(X ) by the representation

π(f ) : L2(X ) → L2(X )

ξ 7→ f · ξ.

For technical reasons, it is more convenient to replace C (X ) by C∞(X ), ∆
by its square root D, the Dirac operator, and the Hilbert space L2(X ) by
L2(X , S) where S → X is a vector bundle (spinor bundle).
The triple (C∞(X ), L2(X ,S),D) is an example of a spectral triple.
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Noncommutative Geometry

Spectral reconstruction

This combination recovers distances between points:

d(x , y) = sup
f ∈C∞(X )

{|f (x)− f (y)| : ∥[D, π(f )]∥ ≤ 1}.

Figure: Van Suijlekom, W. D. (2015). Noncommutative geometry and particle
physics. Dordrecht: Springer.
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Noncommutative Geometry

Connes reconstruction theorem

Connes (2008, conj. 1996).

For any commutative ∗-algebra A, Hilbert space H and self-adjoint
operator D such that (A,H,D) forms a d-dimensional commutative
spectral triple, there is a Riemannian manifold X , a vector bundle S → X
and a Dirac-type operator DS such that

(A,H,D) = (C∞(X ), L2(X ,S),DS).

Furthermore, this association is unique (up to certain natural
isomorphisms).
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Noncommutative Geometry

Noncommutative geometry

So far, we have been doing “algebraic geometry”, capturing the
Riemannian manifold entirely in the data (A,H,D), where:

A is a commutative ∗-algebra, H a Hilbert space and D an
unbounded self-adjoint operator on H;

A is represented as bounded operators on H;

Some technical compatibility conditions.

Noncommutative geometry is the study of such triples (A,H,D),
where we drop the requirement that A is commutative.
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Physics

Part 2: The physicsy bit
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Physics

Standard model
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M ϕ0(ūλj γ
5uλj )−

ig
2

mλ
d

M ϕ0(d̄λ
j γ

5dλ
j )+ X̄+(∂2−M2)X++

X̄−(∂2 −M2)X− + X̄ 0(∂2 − M2

c2w
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Physics

The noncommutative standard model

If we augment the commutative spectral triple (C∞(X ), L2(X ,S),DS)
with the carefully chosen data (AF ,HF ,DF ), putting
D := DS ⊗ 1 + γ ⊗ DF , we get the (noncommutative) spectral triple

(C∞(X )⊗ AF , L2(X , S)⊗ HF ,D).

Perturbing D by suitable self-adjoint operators V , the functional

f 7→ Tr(f (D + V )), f : R → R≥0 even, s.t. f (D) ∈ L1,

recovers the entire Lagrangian of the Standard Model with some
coefficients depending on f . This is called the spectral action.
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Multiple operator integrals

Part 3: Research
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Multiple operator integrals

Functional calculus

It seems important to really understand Tr(f (D + V )) for self-adjoint
operators D and V .

For a bounded operator A on a Hilbert space, the operator exp(tA) can be
defined as a limit of

∑
n≤N

tn

n!A
n (think of your ODE course).

We can go further and define f (D) for a.e.-finite measurable functions
f : R → C and (unbounded) self-adjoint operators D.
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Multiple operator integrals

Taylor expansion

If f is smooth enough, a naive way to analyse Tr(f (D + V )) is to do a
Taylor expansion of the function t 7→ Tr(f (D + tV )) around t = 0:

Tr(f (D + V )) =?
∞∑
n=0

1

n!

dn

dtn

∣∣∣∣
t=0

Tr(f (D + tV ))

=!?
∞∑
n=0

Tr

(
1

n!

dn

dtn

∣∣∣∣
t=0

f (D + tV )

)
.

What on earth is 1
n!

dn

dtn

∣∣
t=0

f (D + tV )?
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Multiple operator integrals

Multiple operator integrals

If a function ϕ : Rn+1 → C admits a representation of the form

ϕ(λ0, . . . , λn) =

ˆ
Ω
g0(λ0, ω) · · · gn(λn, ω)dν(ω),

(with some condition on the gj) and self-adjoint operators H0, . . . ,Hn, we
can define the transformer

TH0,...,Hn

ϕ :B(H)× · · · × B(H) → B(H)

(V1, . . . ,Vn) 7→
ˆ
Ω
g0(H0, ω)V1g1(H1, ω) · · ·Vngn(Hn, ω)dν(ω).

This does not depend on how we represent ϕ!
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Multiple operator integrals

Divided differences

Given a smooth function f , we can define

f [1](λ0, λ1) =
f (λ0)− f (λ1)

λ0 − λ1
.

By the Cauchy integral formula,

f [1](λ0, λ1) =

ˆ
γ
f (z)(z − λ0)

−1(z − λ1)
−1dz ,

but we also have the representation

f [1](λ0, λ1) =

ˆ
∆1

ˆ
R
f̂ ′(t)e its0λ0e its1λ1dtdσ(s0, s1),

and so we always haveˆ
γ
f (z)(z−H0)

−1V (z−H1)
−1dz =

ˆ
∆1

ˆ
R
f̂ ′(t)e its0H0Ve its1H1dtdσ(s0, s1).
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Multiple operator integrals

Taylor expansions!

We can define higher divided differences of f , and then we can make sense
of

1

n!

dn

dtn
∣∣
t=0

f (D + tV ) = TD,...,D

f [n]
(V , . . . ,V )

=

ˆ
γ
f (z)(z − D)−1V (z − D)−1 · · ·V (z − D)−1dz .
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Multiple operator integrals

Work in progress

Current work with my supervisors and Teun van Nuland:

WIP (2023)

Let H0, . . . ,Hn be self-adjoint operators and let ϕ : Rn+1 → C be such
that the transformer

TH0,...,Hn

ϕ : B(H)× · · · × B(H) → B(H)

is defined. Then (leaving out technical details), TH0,...,Hn

ϕ can be extended
to a transformer of unbounded operators

TH0,...,Hn

ϕ : opr1 × · · · oprn → opr1+···+rn .
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Multiple operator integrals

Thanks

Thank you for your attention!

Take home messages:

You can reconstruct a Riemannian manifold given the spectral triple
(C∞(X ), L2(X , S),DS);

Noncommutative geometry is the study of (noncommutative) spectral
triples (A,H,D);

Multiple operator integrals are a powerful technical tool in this field.
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