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Introduction

Summary of this talk

1 Motivation

2 Pseudodifferential calculus

3 Multiple operator integrals as pseudodifferential operators

This talk is based on work in progress with Teun van Nuland, Fedor
Sukochev and Dmitriy Zanin.
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Motivation

Part 1: Motivation
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Motivation

A slice of life

An important object in noncommutative geometry is the JLO cocycle,
which is defined for a0, . . . , an ∈ B(H), n even, as

Ψn(a0, . . . , an) = Tr

(
ηa0

ˆ
∆n

e−t0D2
[D, a1]e

−t1D2 · · · [D, an]e
−tnD2

dt

)
.

Here ∆n is the standard n-simplex, and D is an unbounded self-adjoint
operator.

Figure: by Teun van Nuland
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Motivation

Multiple operator integrals

If a function ϕ : Rn+1 → C admits a representation of the form

ϕ(λ0, . . . , λn) =

ˆ
Ω
g0(λ0, ω) · · · gn(λn, ω)dν(ω),

with (Ω, ν) and gj : R× Ω → C nice enough, then for self-adjoint
operators H0, . . . ,Hn, we can define the transformer

TH0,...,Hn

ϕ : B(H)× · · · × B(H) → B(H)

TH0,...,Hn

ϕ (V1, . . . ,Vn) =

ˆ
Ω
g0(H0, ω)V1g1(H1, ω) · · ·Vngn(Hn, ω)dν(ω).

This does not depend on how we represent ϕ!
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Motivation

Taylor expansions

An important application of MOIs is to make sense of Taylor expansions of
the functional calculus. For f : R → R smooth enough, we recursively
define

f [n](λ0, . . . , λn) =
f [n−1](λ0, . . . , λn−1)− f [n−1](λ1, . . . , λn)

λ0 − λn
.

In particular,
1

n!
f (n)(λ) = f [n](λ, . . . , λ).

For densely defined, self-adjoint H and bounded s.-a. V , (abbreviating

TH,...,H
ϕ to TH

ϕ ), and f regular enough,

1

n!

dn

dtn
∣∣
t=0

f (H + tV ) = TH
f [n]

(V , . . . ,V ).
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Motivation

Commutators

MOIs come with many useful identities, which can then be applied in
various contexts. An example:

(z − H)−1V = V (z − H)−1 + [(z − H)−1,V ]

= V (z − H)−1 + (z − H)−1[H,V ](z − H)−1.

If f is holomorphic, taking a contour integral we can write

TH
f [n]

(V1, . . . ,Vn) =
1

2πi

ˆ
Γ
f (z)(z − H)−1V1(z − H)−1 · · ·Vn(z − H)−1dz ,

and therefore

TH
f [n]

(aV1,V2, . . .Vn) = aTH
f [n]

(V1,V2, . . . ,Vn)

+ TH
f [n+1]([H, a],V1,V2, . . . ,Vn).

This formula holds for non-holomorphic f too.
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Motivation

JLO as MOI

From this perspective, we can write the JLO cocycle as

Tr

(
ηa0

ˆ
∆n

e−t0D2
[D, a1]e

−t1D2 · · · [D, an]e
−tnD2

dt

)
= Tr(ηa0T

D2

f [n]
([D, a1], . . . , [D, an])),

with f (x) = exp(−x). Using this observation we can obtain a clean and
hassle-free proof of ...
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Motivation

Local index formula

The Connes–Moscovici local index formula is a generalisation of the
Atiyah–Singer index theorem to noncommutative geometry. We write
X (m) = [D2, [D2, [· · · , [D2,X ] · · · ]].

Connes–Moscovici

Let (A,H,D) be a spectral triple (plus technical conditions). For n odd,

ϕn(a0, . . . , an) a0, . . . , an ∈ A

=
∑

|k|,q≥0

cn,k,q Resz=0 z
qTr

(
a0[D, a1]

(k1) · · · [D, an]
(kn)|D|−2|k|−2z−n

)
defines a (b,B)-cocycle whose cohomology class in HC odd(A) coincides
with the cyclic cohomology Chern character ch∗(A,H,D).
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Motivation

Problem

There is just one problem, however.

The intermediate steps would involve expressions like

TD2

f [n]
([D2,X1],X2, . . . ,Xn),

where X1, . . . ,Xn ∈ B(H), but [D2,X1] is an unbounded operator!

E. Hekkelman (UNSW) Unbounded MOIs August 23 2023 10 / 22



Pseudodifferential calculus

Part 2: Connes–Moscovici’s pseudodifferential calculus
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Pseudodifferential calculus

Sobolev spaces

Given a densely defined, invertible self-adjoint operator Θ on a Hilbert
space H, we can define the ‘Sobolev’ spaces Hs , s ∈ R, as the completion
of domΘs under the norm

∥ξ∥2s = ⟨ξ, ξ⟩s := ⟨Θsξ,Θsξ⟩H = ∥Θsξ∥2, ξ ∈ domΘs .

This forms a Hilbert space. We will assume that

H∞ :=
⋂
s∈R

Hs

is dense in H.
We have continuous embeddings

Ht ⊆ Hs , s ≤ t,

because
∥Θsξ∥ ≤ ∥Θs−t∥∞∥Θtξ∥.
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Pseudodifferential calculus

Analytic order

Even though Θ itself is an unbounded operator on H, if we regard it as an
operator

Θ : H1 → H0 = H,

it is a perfectly good bounded operator:

∥Θ∥H1→H0 = sup
ξ:∥Θξ∥≤1

∥Θξ∥ = 1.

We can define opr for r ∈ R as those operators T on H such that
H∞ ⊆ domT , TH∞ ⊆ H∞, and T extends to a bounded operator

T : Hs+r → Hs , s ∈ R.

Note that opr ⊆ opt for r ≤ t.
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Pseudodifferential calculus

Examples

In a classical setting, if ∆ is the Laplace operator on the Euclidean
space Rn, setting Θ = (1 +∆)1/2 precisely gives the classical Sobolev
spaces

Hs,2(Rn) := {f ∈ S ′(Rn) : F−1
[
(1 + |ξ|2)s/2F f

]
∈ L2(Rn)},

where F is the Fourier transform.
The k-th order (pseudo)differential operators are contained in opk , as
are the Fourier multipliers Tm for which m(ξ) = O(|ξ|k).

If Θ is itself a bounded operator on H, then Hs ≃ H for all s, and
opr = B(H) for all r .

In noncommutative geometry, one has a spectral triple (A,H,D), and
one usually takes Θ = (1 + D2)1/2. Then for example D ∈ op1, and
for a regular spectral triple a, [D, a] ∈ op0 for all a ∈ A.
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Unbounded MOIs

Part 3: MOIs as pseudodifferential operators
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Unbounded MOIs

Unbounded MOIs

Suppose we have a function

ϕ(λ0, . . . , λn) =

ˆ
Ω
g0(λ0, ω) · · · gn(λn, ω)dν(ω)

such that for self-adjoint H0, . . . ,Hn and V1, . . . ,Vn ∈ B(H)

TH0,...,Hn

ϕ (V1, . . . ,Vn) =

ˆ
Ω
g0(H0, ω)V1g1(H1, ω) · · ·Vngn(Hn, ω)dν(ω)

defines a bounded operator.

If Vi ∈ opri , and gj(Hj , ω) ∈ op0 the integrand is unbounded on H, but
can be considered a bounded operator Hs+r1+···+rn → Hs for each s ∈ R.
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Unbounded MOIs

MOI as ΨDO

Given a pseudodifferential calculus generated by a densely defined,
invertible self-adjoint operator Θ on a Hilbert space H, we can define
MOIs as follows.

H., van Nuland, Sukochev, Zanin (2023, WIP)

Let H0, . . . ,Hn be self-adjoint operators that strongly commute with Θ.
Let ϕ : Rn+1 → C be in the Birman–Solomyak function class. Then for
Xi ∈ opri ,

TH0,...,Hn

ϕ (X1, . . . ,Xn) =

ˆ
Ω
a0(H0, ω)X1a1(H1, ω) · · ·Xnan(Hn, ω)dν(ω)

(1)

is a well-defined operator in opr1+···+rn .
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Unbounded MOIs

Relation to bounded MOIs

A quick way to see that this works, is by writing for Xi ∈ opri

TH0,...,Hn

ϕ (X1, . . . ,Xn) = TH0,...,Hn

ϕ (X1Θ
−r1Θr1 ,X2, . . . ,

Xn).
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Unbounded MOIs
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Unbounded MOIs

Relation to bounded MOIs

A quick way to see that this works, is by writing for Xi ∈ opri

TH0,...,Hn

ϕ (X1, . . . ,Xn) = TH0,...,Hn
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On the RHS, the MOI has bounded arguments.

This also shows that unbounded MOIs inherit many properties from usual
MOI theory.

To emphasise: this paradigm of MOIs makes sense of multiple operator
integrals whose arguments are differential operators, pseudodifferential
operators or Fourier multipliers.
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Unbounded MOIs

Asymptotic expansion

By applying identities like

TD2

f [n]
(X1,X2, . . .Xn) = X1T

D2

f [n]
(1,X2, . . . ,Xn)

+ TD2

f [n+1]([D
2,X1], 1,X2, . . . ,Xn).

a million times (which is now possible!), one gets the formal expression
(using multi-index notation and X (m) = [D2, [· · · , [D2,X ] · · · ])

T
(tD)2

f [n]
(X1, . . . ,Xn) ∼

∞∑
|m|=0

t2|m|CmX
(m1)
1 · · ·X (mn)

n T
(tD)2

f [n+|m|](1, . . . , 1)

=
∞∑

|m|=0

t2|m| Cm

(n + |m|)!
X

(m1)
1 · · ·X (mn)

n f (n+|m|)(t2D2).

Of course, this only makes sense if we can say something about the
remainder terms.
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Unbounded MOIs

Local index formula

This expansion demystifies the local index formula

ϕn(a0, . . . , an)

=
∑

|k|,q≥0

cn,k,q Resz=0 z
qTr

(
a0[D, a1]

(k1) · · · [D, an]
(kn)|D|−2|k|−2z−n

)
as being related to the expansion of

a0T
D2

f
[n]
n
([D, a1], . . . , [D, an])

for fn(x) = xn/2, but can also be used to prove new results.
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Unbounded MOIs

Existence of asymptotic expansions

H., van Nuland, Sukochev, Zanin (2023, WIP)

Let A be an algebra of bounded operators and let D be a densely defined,
self-adjoint operator s.t. (D − i)−1 ∈ Ls , s > 0, (for example, (A,H,D) is
s-summable spectral triple) and denote the algebra of operators generated
by A and D by B. Let P,V ∈ B with V self-adjoint and bounded. If
Tr(Qe−t2D2

) admits an asymptotic expansion as t → 0 for each operator
Q ∈ B, then

Tr(Pe−t2(D+V )2)

also admits an asymptotic expansion as t → 0, given by

Tr(Pe−t2(D+V )2) ∼
∞∑
n=0

n∑
k=0

∞∑
|m|=0

(−1)n+|m|

(n + |m|)!
t2(n+|m|)−1cn,kCm

× Tr
(
PD0,kV

(m1)D1,k · · ·V (mn)Dn,ke
−t2D2)

.
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Unbounded MOIs

Thanks

Thank you for your attention!
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