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Abstract

Trace formulas appear in many forms in noncommutative geometry (NCG). In the first
part of this thesis, we obtain results for asymptotic expansions of trace formulas like heat
trace expansions by adapting the theory of Multiple Operator Integration to NCG. More
broadly, this construction provides a natural language for operator integrals in NCG,
which systematises and simplifies operator integral arguments throughout the literature.
Towards this end, we construct a functional calculus for abstract pseudodifferential op-
erators and generalise Peller’s construction of multiple operator integrals to this abstract
pseudodifferential calculus. In the process, we obtain a noncommutative Taylor formula.

In the second part of this thesis, we shift our attention to Dixmier trace formulas. First, we
provide an approximation of the noncommutative integral for spectrally truncated spectral
triples in the Connes–Van Suijlekom paradigm of operator system spectral triples. Our
approximation has a close link to Quantum Ergodicity, which we will use to state an NCG
analogue of the fundamental result that ergodic geodesic flow implies quantum ergodicity.
Furthermore, we provide a Szegő limit theorem in NCG. Next, we provide a Dixmier trace
formula for the density of states, a measure originating in solid state physics that can be
associated with an operator on a geometric space. We first provide this formula in the
setting of discrete metric spaces, and then in the setting of manifolds of bounded geometry.
The latter leads to a Dixmier trace formula for Roe’s index on open manifolds.
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Chapter 1

Introduction

Do not forget our motto “work harder”, and act accordingly.

Fedor Sukochev

The thesis before you covers a variety of topics in spectral theory, tied together by Alain

Connes’ philosophy of noncommutative geometry [Con94]. These will be served in two

parts: the first concerns pseudodifferential operators and multiple operator integrals based

on the paper [HMN24], the second part revolves around Dixmier trace formulas related

to Connes’ integral formula based on the papers [Aza+22; HM24a; HM24b]. All four

papers are joint works with Edward McDonald, and furthermore Nurulla Azamov, Teun

van Nuland, Fedor Sukochev and Dmitriy Zanin feature as co-author on one paper each.

Along the way we will additionally encounter heat trace expansions, quantum ergodicity,

and a little index theory. While this mix hopefully provides an entertaining read, as a

consequence there is a lot of background material to discuss. I have made an attempt to

summarise the five main themes of this dissertation in five sections. The experts and the

brave could skip ahead as the mathematical content of each chapter is meant to stand

alone — with the exception of Chapter 3 which depends on Chapter 2. In comparison

with the papers this thesis draws from, the presentation here is made more accessible,

with additional background information and some novel results.

1



CHAPTER 1. INTRODUCTION

1.1 Noncommutative geometry

Over the past decades noncommutative geometry has developed into a rich field of math-

ematics, bringing together differential geometry, functional analysis, spectral theory, K-

theory, representation theory, quantum field theory, and many more areas. It allows the

study of ‘manifolds’ on which coordinate functions do not necessarily commute, exotic

spaces which appear in various areas of mathematics and physics. As any brief summary

of this subject must, the overview here leaves out many interesting and important as-

pects of NCG. Recommended expositions which do more justice to the field can be found

in [Con94; GVF01; Sui25]. The book [EI18] is an excellent reference for many of the

analytical details that we will use. For a more algebraic introduction to noncommutative

geometry, see [Kha13].

1.1.1 Spectral geometry

As is taught in kindergarten, operators associated with geometric spaces carry geometric

information in their spectra which can be carefully extracted. Indeed, (hearing) children

can tell that smaller objects tend to produce higher-pitched sounds, hollow objects sound

different from solid ones, and can blindly distinguish between the sound of strings, drums,

and blocks. What their ears are picking up is the spectrum of the Laplace operator.

Modeling an object as a bounded domain (open connected set) in d-dimensional Euclidean

space Ω ⊆ Rd, the sound it produces when lightly struck decomposes into frequencies

which are determined by the eigenvalues of the Laplace operator ∆ :=
∑d
j=1 ∂

2
j on Ω with

Dirichlet boundary conditions, that is, they are the eigenvalues of those λ ∈ R≥0 for which

there exists a solution of the Helmholtz equation
−∆u(x) = λu(x), x ∈ Ω;

u|∂Ω ≡ 0.

Writing N(λ) for the number of such eigenvalues (counting multiplicities) less than λ,

2



1.1.1 Spectral geometry

Weyl’s law [Wey12; Cha84; Ivr16] gives that

N(λ) ∼ ωd
d(2π)dVol(Ω)λ

d
2 , λ → ∞, (1.1)

where ωd is the volume of the unit sphere Sd−1 ⊆ Rd, and ∼ means that the ratio con-

verges to 1. This indicates that in a perfect world, our ears can detect the dimension d

and the volume of an object. For d ≥ 2 and with technical assumptions on Ω (smooth

boundary, set of periodic billiards has measure zero), Duistermaat, Guillemin and Ivrii

have shown [DG75; Ivr80; Ivr16] that even the d− 1-dimensional volume of the boundary

∂Ω, Vol(∂Ω), can be ‘heard’ as indicated by the Weyl law with error terms

N(λ) ∼ ωd
d(2π)dVol(Ω)λ

d
2 − ωd−1

4(d− 1)(2π)d−1 Vol(∂Ω)λ
d−1

2 + o(λ
d−1

2 ), λ → ∞. (1.2)

This error term was already conjectured by Weyl himself [Wey13]. However, note that

spheres satisfy neither these technical conditions nor this version of Weyl’s law [Ivr16].

See Figure 1.1 for an illustration of the effect of the error term in Weyl’s law.

More is true: even information about an object’s curvature is hidden inside the spectrum

of the Laplace operator. Taking now a closed (oriented) Riemannian manifold (M , g)

with Laplace–Beltrami operator ∆g, Minakshisundaram and Pleijel [MP49] proved that

the heat trace admits an asymptotic expansion

Tr(exp(t∆g)) ∼
∞∑
k=0

ak(∆g)t
k−d

2 , t → 0,

the first coefficients of which can be given as [Ber68; Gil75]

a0(∆g) = (4π)− d
2 Vol(M);

a2(∆g) = −1
6 (4π)

− d
2

∫
M
Rdνg,

where νg is the Riemannian volume form of M and R is the scalar curvature. The coeffi-

cients ak(∆g) vanish for odd k, and the higher coeffients ak(∆g) are integrals over M of

(complicated) expressions involving the metric of M [Gil75].

These facts raise the question how far this philosophy can be pushed. And indeed it is

tradition in any text on spectral geometry to cite an influential essay by Mark Kac from

3



CHAPTER 1. INTRODUCTION

Figure 1.1: Weyl’s law and the spectral counting function for the Laplacian on a disk
and a 5-pointed star, with Dirichlet boundary conditions. Both domains have area equal
to 1, making the first-order term in Weyl’s law the same, N(λ) ≈ 1

4πλ, plotted in blue.
The 5-pointed star has a longer perimeter than the disk, resulting in a larger deviation
from Weyl’s law (1.2). These eigenvalues were generated in Python with the finite-element
method, using FEniCSx [Bar+23].

1966 with the title “Can one hear the shape of a drum?” [Kac66]. In this text, Kac asked

whether a bounded domain in R2 can be determined up to isometries by the eigenvalues

of the Laplace operator, and explored various aspects surrounding this question. For

Riemannian manifolds the answer was known to be negative [Mil64] — only much later

two isospectral domains in R2 were identified [GWW92], answering Kac’s question in the

negative, see Figure 1.2.

In some sense, the Laplacian is not too far off from pinning down a compact Riemannian

manifold, however. Let us say that the Riemannian manifolds (M1, g1) and (M2, g2) are

isometric if there exists a diffeomorphism ϕ : M1 → M2 such that ϕ∗g2 = g1, where ϕ∗ de-

notes the pull-back via ϕ. Arendt, Biegert and Ter Elst proved that the data (L2(M), ∆g)

4



1.1.1 Spectral geometry

0 1 2 3

0
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Figure 1.2: Two domains in R2 with spectrally indistinguishable Laplacians [GWW92].
This figure was created by Jitse Niesen and is in public domain.

in combination with the cone of positive elements L2(M)+, that is, those ϕ ∈ L2(M)

corresponding to positive real-valued functions, determines the manifold up to isometries.

Theorem 1.1.1 ([ABE12]). Let (M1, g1) and (M2, g2) be connected compact Riemannian

manifolds, with corresponding Laplace–Beltrami operators ∆1 and ∆2. Then the following

are equivalent:

1. the Riemannian manifolds (M1, g1) and (M2, g2) are isometric;

2. there exists a bounded linear map U : L2(M1) → L2(M2) such that

ϕ ∈ L2(M1)+ ⇐⇒ Uϕ ∈ L2(M2)+;

U∆1 = ∆2U .

Still, the cone of positive elements L2(M)+ is in some sense not operator theoretical, and

one can wonder if there is a clever and natural way to nail down a compact Riemannian

manifold using only operators.

And indeed there is an algebra of operators on L2(M) that we can add to the data

(L2(M), ∆g) to do this job. It is the commutative C∗-algebra C(M) of continuous

5



CHAPTER 1. INTRODUCTION

complex-valued functions on M , which represents canonically as bounded operators on

L2(M) via pointwise multiplication: for f ∈ C(M) we write

Mf : L2(M) → L2(M)

g 7→ fg.

Then the triple (C(M),L2(M ), ∆g) uniquely determines the Riemannian manifold.

Corollary 1.1.2. Let (M1, g1) and (M2, g2) be connected compact Riemannian mani-

folds, with corresponding Laplace–Beltrami operators ∆1 and ∆2. Then the following are

equivalent:

1. the Riemannian manifolds (M1, g1) and (M2, g2) are isometric;

2. there exists a unital ∗-isomorphism ψ : C(M1)
∼−→ C(M2) and a unitary operator

U : L2(M1) → L2(M2) such that

UMf =Mψ(f )U , f ∈ C(M1)

U∆1 = ∆2U .

Proof. (1) ⇒ (2) is trivial. For the reverse direction, suppose we have a unitary U :

L2(M1) → L2(M2) as in (2). Because the manifolds Mi are assumed to be compact, the

kernel of ∆i consists of constant functions. Since U intertwines the Laplacians ∆i, we can

therefore assume without loss of generality that U1L2(M1) = 1L2(M2). By Theorem 1.1.1,

we need only check that

ϕ ∈ L2(M1)+ ⇐⇒ Uϕ ∈ L2(M2)+.

Indeed, we have

ϕ ∈ L2(M1)+ ⇐⇒ ⟨Mf1L2(M1),ϕ⟩L2(M1) ≥ 0 ∀f ∈ C(M1)+

⇐⇒ ⟨Mψ(f )1L2(M2),Uϕ⟩L2(M2) ≥ 0 ∀f ∈ C(M1)+

⇐⇒ Uϕ ∈ L2(M2)+.

6



1.1.2 Noncommutative geometry

1.1.2 Noncommutative geometry

Comfortable with the idea that operators on a Hilbert space can encode geometrical data,

we can now take the radical step that Alain Connes laid out and generalise geometry

beyond the commutative world.

With Gelfand duality in mind (the correspondence between commutative C∗-algebras and

locally compact Hausdorff spaces [Mur90]), the study of noncommutative C∗-algebras can

be thought of as ‘noncommutative topology’. Similarly, the theory of noncommutative

von Neumann algebras can be thought of as ‘noncommutative measure theory’. These

analogies are more than amusing observations. Such noncommutative C∗-algebras and

von Neumann algebras have proven their value as two of the most versatile objects in

operator theory, appearing in countless areas of mathematics and physics. Topological

and measure theoretic constructions and arguments can inform analogues in C∗-algebras

and von Neumann algebras and vice versa.

As a concrete example, K-theory was developed by Atiyah and Hirzebruch [AH61] as

a theory of groups constructed from vector bundles on topological spaces (now called

topological K-theory). This was used with great success in a proof of the Atiyah–Singer

index theorem [AS68]. Soon after, K-theory was generalised to (noncommutative) C∗-

algebras, where it became indispensable for operator algebraists, with landmark results

being Elliott’s program for the classification of C∗-algebras [Ell76; Ell93] and Brown–

Douglas–Fillmore’s development of K-homology and the classification of extensions of

C∗-algebras [BDF77] (see [Weg93; Bla98; RLL00] for books on K-theory).

In the wake of the developments and ideas surrounding K-theory and the Atiyah–Singer in-

dex theorem, Connes postulated his noncommutative differential geometry [Con82; Con85;

Con94]. He saw that a noncommutative ∗-algebra of bounded operators, in combination

with a self-adjoint operator satisfying certain properties, can be interpreted as a noncom-

mutative generalisation of a (spin) manifold. These ideas and techniques are relevant for

badly behaved spaces like the unitary dual of a finitely generated non-abelian discrete

or Lie group, the leaf space of a foliated manifold, or the orbit space of group actions

7



CHAPTER 1. INTRODUCTION

on manifolds, which are more easily described with noncommutative ∗-algebras than as a

usual point-set topological space.

Explicitly, a ‘noncommutative space’ is described by a spectral triple. This has its origin

in a paper on Kasparov’s KK-theory by Baaj and Julg [BJ83] where spectral triples are

introduced as a type of ‘unbounded K-cycle’. Spectral triples were later popularised by

Alain Connes who recognised their potential as a characterisation of manifolds.

Definition 1.1.3. A unital spectral triple (A, H,D) consists of:

1. a Hilbert space H;

2. a unital ∗-algebra A represented faithfully as bounded operators π : A → B(H),

where π(1) = 1B(H);

3. a self-adjoint operator D on H with compact resolvent,

such that π(a) dom(D) ⊆ dom(D) and [D,π(a)] extends to a bounded operator for all

a ∈ A. We usually identify a ∈ A with its image π(a) ∈ B(H), and omit writing π

altogether.

The spectral triple is called ‘even’ if equipped with a Z2-grading γ on H such that Dγ =

−γD and aγ = γa for all a ∈ A.

The basic commutative example of a spectral triple has roots in the Atiyah–Singer index

theorem. It is not dissimilar from the triple (C(M),L2(M), ∆g) that we arrived at in

Section 1.1.1. We simply replace C(M) by C∞(M), and ∆g by the Dirac operator, an

elliptic first-order differential operator which functions as a ‘square root’ of ∆g. Such an

operator does not exist on L2(M ), but it does on the Hilbert space of square-integrable

sections of the spinor bundle of so-called ‘spin manifolds’. An oriented Riemannian man-

ifold is called spin if there exists a complex Hermitian vector bundle S → M (the spinor

bundle) such that End(S) is isomorphic to a certain Clifford algebra, and there exists a

charge conjugation on S [LM89, Chapter II][GVF01, Chapter 9][Sui25, Chapter 4]. The

8



1.1.2 Noncommutative geometry

precise details do not matter much for this thesis, what is important is that the triple then

takes the form (C∞(M),L2(S),DS), where L2(S) are the square-integrable sections of S

and DS is the Dirac operator associated with S. The terminology ‘even’ spectral triple is

motivated by the fact that for an even-dimensional spin manifold M , the canonical spec-

tral triple (C∞(M),L2(S),DS) admits a natural grading γM making it an even spectral

triple [GVF01, Chapter 9][Sui25, Chapter 4].

The claim that DS functions as a square root of the Laplacian is motivated by the Lich-

nerowicz formula [LM89, Theorem II.8.8][GVF01, Theorem 9.16]

D2
S = −∆S +

1
4s,

where ∆S is the Laplacian associated with the spin bundle S and s is the scalar curvature

of M . In line with this formula, for general spectral triples (A, H,D), the operator D2 is

commonly interpreted as an analogue of a Laplace operator.

In light of Section 1.1.1 it is not surprising that the canonical spectral triple of a compact

Riemannian spin manifold is a unique invariant for the spin manifold. However, for spectral

triples we even have an explicit reconstruction theorem [Con13]. From an abstract unital

spectral triple (A, H,D) with specific additional properties like A being commutative,

one can construct a compact spin manifold M which realises the spectral triple concretely

as (C∞(M),L2(S),DS). This highly non-trivial result requires recognising when the

∗-algebra A is of the form C∞(M ) for a smooth manifold M , using only how A and D

are situated relative to each other as operators on the abstract Hilbert space H. This

puts solid ground under the claim that spectral triples can be considered noncommutative

generalisations of (spin) manifolds.

Interest in NCG has not been limited to mathematics. In physics, noncommutative spaces

have been used to explain features of the quantum Hall effect [BES94] and topological

insulators [Sch16], and there is extensive literature on applications of NCG in Quantum

Field Theory, see e.g. [Sza03; CM08; Sui25] for overviews. The Standard Model of particle

physics, minimally coupled to gravity, can be entirely derived through an action prin-

ciple [CC96] from the description of the universe as a noncommutative space [CCM07;

9



CHAPTER 1. INTRODUCTION

Sui25]. This unified geometrical treatment of both Quantum Field Theory and General

Relativity makes for an attractive approach to quantum gravity, and extends beyond the

Standard Model to, for example, the Pati–Salam model [CCS13; CCS15].

Wrapping up this overview of NCG, we will now give two examples of noncommutative

spaces which will appear throughout this dissertation. This exposition is taken from

the joint paper of the author with Edward McDonald [HM24b]; for more details on the

noncommutative torus (on which there is much literature) we refer to [HLP19a; HLP19b]

and [GVF01, Section IV.12.3], for details on almost commutative manifolds to [Sui25,

Chapter 10].

Example 1.1.4. Let d ≥ 2 and let θ be a real d× d antisymmetric matrix. The noncom-

mutative torus is the universal C∗-algebra C(Td
θ) generated by a family of unitary elements

{un}n∈Zd subject to the relations

unum = e
i
2 ⟨n,θm⟩un+m, n,m ∈ Zd.

The functional

τθ

( ∑
k∈Zd

ckuk

)
:= c0

extends to a continuous faithful tracial state on C(Td
θ). The smooth subspace C∞(Td

θ) is the

subalgebra of x ∈ C(Td
θ) for which x̂(k) = τθ(xu

∗
k) is a rapidly decaying sequence on Zd.

The Hilbert space in the GNS representation corresponding to τθ is denoted L2(Td
θ), and

{un}n∈Zd is an orthonormal basis for L2(Td
θ). The self-adjoint operators Dj, j = 1, . . . , d

on L2(Td
θ) are defined on the basis by

Djuk := kjuk, k = (k1, . . . , kd) ∈ Zd.

The operator D =
∑d
j=1Dj ⊗γj on L2(Td

θ)⊗ CNd, where γj are standard Clifford matrices

on CNd with Nd = 2⌊ d
2 ⌋, gives a spectral triple

(C∞(Td
θ),L2(T

d
θ) ⊗ CNd ,D),

where we represent C∞(Td
θ) as operators on L2(Td

θ) ⊗ CNd by acting on the first compo-

nent [GVF01, Section 12.3]. We write ∆ := −
∑d
j=1D

2
j as an operator on L2(Td

θ), so that

|D| =
√

−∆ ⊗ 1CNd .

10



1.2. PSEUDODIFFERENTIAL OPERATORS

Example 1.1.5. Given the canonical spectral triple (C∞(M),L2(S),DM ) of an even-

dimensional spin manifold with natural grading γM , and a finite spectral triple (AF , HF ,DF ),

meaning that HF and AF are finite-dimensional, the product spectral triple

(C∞(M) ⊗ AF ,L2(S) ⊗ HF ,DM ⊗ 1 + γM ⊗DF ).

is called an almost-commutative manifold.

1.2 Pseudodifferential operators

Pseudodifferential operators naturally emerged from the study of partial differential equa-

tions (PDEs) [KN65; Hör67], where they became a crucial tool in determining qualitative

properties of solutions to PDEs. For us, they are indispensable in obtaining Weyl laws

and in determining coefficients in heat trace expansions like those covered in Section 1.1.

See [Tay81; Shu01; Hör07] for classic books on the subject.

Let us loosely sketch a path leading to the definition of a classical pseudodifferential

operator, with no respect for technical details. Suppose we want to study a PDE on

Euclidean space, ∑
|α|≤k

aα(x)∂
αu(x) = f(x), x ∈ Rd,

for nice enough functions f and aα. The operator L :=
∑

|α|≤kMaα∂
α, complicated as it

is, is much easier to study after a Fourier transform. For the Fourier transform, we will

use the convention

û(ξ) := F(u)(ξ) :=
1

(2π) d
2

∫
Rd
e−i⟨x,ξ⟩u(x) dx, ξ ∈ Rd,u ∈ L2(R

d).

In the frequency domain, the operator L then corresponds to multiplying with the poly-

nomial pL(x, ξ) :=
∑

|α|≤k aα(x)(iξ)
α,

Lu(x) =
1

(2π) d
2

∫
Rd
ei⟨x,ξ⟩pL(x, ξ)û(ξ) dξ.

11
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In an ideal scenario, when pL(x, ξ) = pL(ξ) is non-zero and independent of x, we can

simply solve the PDE from before by putting

u(x) = L−1f(x) =
1

(2π) d
2

∫
Rd
ei⟨x,ξ⟩ 1

pL(ξ)
f̂(ξ) dξ.

Likewise, the heat equation

Lu(t,x) = ∂tu(t,x);

u(0,x) = f(x),

can then be solved by putting

u(t,x) = etLf(x) :=
1

(2π) d
2

∫
Rd
ei⟨x,ξ⟩etpL(ξ)f̂(ξ) dξ.

The idea behind pseudodifferential operators is that even though these operators L−1 and

etL are not differential operators, the analytical properties of an operator of the form

Tau(x) =
1

(2π) d
2

∫
Rd
ei⟨x,ξ⟩a(x, ξ)û(ξ) dξ,

depend not so much on its symbol a being a polynomial, but rather on the qualitative

properties of a(x, ξ) like its asymptotic growth as |ξ| → ∞. Studying properties of these

more general operators, and deriving similar norm and regularity estimates as for differen-

tial operators, lets us conclude properties about solutions to PDEs, as the examples L−1

and etL above show.

With the theory of pseudodifferential operators, it can be made precise when and in what

ways the operator L−1 behaves like an order −m ‘differential’ operator, etL an operator

of order −∞, and an operator like (1 − ∆)
s
2 for s ∈ R an operator of order s.

The oldest and most ‘standard’ theory of pseudodifferential operators is that of classical

pseudodifferential operators on Rd [KN65; Hör67]. Its definition is quite technical; we

follow [Tay81, Chapter II], and write ⟨ξ⟩ := (1 + |ξ|2)
1
2 .

Definition 1.2.1. The symbol class Sm1,0(R
d), m ∈ R, is defined as those smooth functions

a ∈ C∞(Rd × Rd) such that for all multi-indices α,β ∈ Nd, there exists a constant

Cα,β ≥ 0 such that

|∂αx ∂
β
ξ a(x, ξ)| ≤ Cα,β⟨ξ⟩m−|α|, x, ξ ∈ Rd.

12



1.2. PSEUDODIFFERENTIAL OPERATORS

We say that a ∈ Sm1,0(R
d) is a classical symbol, denoted a ∈ Smcl (R

d), if there exist smooth

functions am−j ∈ C∞(Rd × Rd) for all j ∈ N which are homogeneous of order m− j,

am−j(x,λξ) = λm−jam−j(x, ξ), λ, |ξ| ≥ 1,

with the property that

a(x, ξ) ∼
∑
j≥0

am−j(x, ξ),

meaning that

a(x, ξ) −
N∑
j=0

am−j(x, ξ) ∈ Sm−N−1
1,0 (Rd), N ∈ N.

It is no coincidence that for the differential operator L from before, if each coefficient aα(x)

is smooth and it and its derivatives are bounded, the symbol pL(x, ξ) = ∑
|α|≤k aα(x)(iξ)

α

is in the symbol class Sk1,0(R
d). It is furthermore a classical symbol, as we can write

pL(x, ξ) =
k∑
j=0

∑
|α|=j

aα(x)(iξ)
α,

where each component ∑|α|=j aα(x)(iξ)
α is homogeneous of order j.

Definition 1.2.2. The Schwartz functions S(Rd) are defined as those f ∈ C∞(Rd) for

which all seminorms

∥f∥α,β := sup
x∈Rd

|xα∂βxf(x)|, α,β ∈ Nd,

are finite.

Definition 1.2.3. A pseudodifferential operator of order m ∈ R, denoted T ∈ Ψm(Rd),

is an operator T : S(Rd) → S(Rd) such that

Tf(x) =
1

(2π) d
2

∫
Rd
ei⟨x,ξ⟩a(x, ξ)f̂(ξ) dξ, f ∈ S(Rd),

for some a ∈ Sm1,0(R
d) — see [Hör07, Theorem 18.1.6] for a proof that Tf ∈ S(Rd). If

furthermore a ∈ Smcl (R
d), we write T ∈ Ψm

cl (R
d), and call T a classical pseudodifferential

operator. Finally,

Ψ∞(Rd) :=
⋃
m∈R

Ψm(Rd), Ψ−∞(Rd) :=
⋂
m∈R

Ψm(Rd).

Similarly we define Ψ∞
cl (R

d) :=
⋃
m∈R Ψm

cl (R
d).

13
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With these constructions, in many ways the pseudodifferential operators Ψ∞(Rd) behave

like differential operators, and Ψ∞
cl (R

d) mimics this behaviour even more closely. For

S ∈ Ψm(Rd) and T ∈ Ψm′
(Rd), we have

S ◦ T ∈ Ψm+m′
(Rd), [S,T ] ∈ Ψm+m′−1(Rd),

as is the case for differential operators. Furthermore, we can define the Bessel-potential

Sobolev spaces (see e.g. [Hör90, Section VII.9] or [Tri78, Section 2.3.3])

Hs := dom(1 − ∆)
s
2

∥·∥s

, ∥f∥s := ∥(1 − ∆)
s
2 f∥L2(Rd), s ∈ R,

which form Hilbert spaces. To be very precise, we take ∆ to be the Friedrich’s extension

of the Laplacian, and dom(1 − ∆)
s
2 indicates the domain of the corresponding operator

on L2(Rd) defined via functional calculus [Sch12, Section 5.3]. For s ≥ 0, this domain

is complete in the norm ∥ · ∥s, but for s < 0 taking the completion in the norm ∥ · ∥s is

necessary. For positive integer s, the space Hs consists of the s times weakly differentiable

L2-functions. For the differential operator L =
∑

|α|≤kMaα∂
α as above, if all coefficients

aα and their derivatives are uniformly bounded, then L extends to a bounded operator

L : Hs+k → Hs, s ∈ R.

Pseudodifferential operators have the same property: if T ∈ Ψm(Rd), then T extends to

a bounded operator

T : Hs+m → Hs, s ∈ R.

Intuitively, T therefore ‘removes’ m degrees of regularity from a function. Note, however,

that m ∈ R need not be an integer — or even positive.

All these objects can similarly be constructed on smooth (not necessarily Riemannian)

manifolds [Shu01, Section I.4][Hör07, Chapter XVIII]. This takes some care, as we need

to think about how to handle the Fourier transform on manifolds. Commonly, pseudod-

ifferential operators are defined locally in coordinate patches via the definitions for Rd

above, and stitched together to define global operators on the manifold. However, sym-

bols can be defined intrinsically as functions on the cotangent bundle as well [Wid78;

Wid80; Saf97].

14



1.2. PSEUDODIFFERENTIAL OPERATORS

The principal symbol of a pseudodifferential operator is of particular importance, as it can

tell us a lot about the operator’s (approximate) invertibility. For compact manifolds, we

have a short exact sequence of vector spaces

0 → Ψm−1
cl (M) → Ψm

cl (M)
σ0−→ C∞(S∗M) → 0,

where the map σ0 is called the symbol map, and S∗M ⊆ T ∗M is the cotangent sphere. The

manifold M is not required to be equipped with a Riemannian metric in order for this to

make sense: the cotangent sphere S∗M can be defined independently of such a metric as the

rays in the cotangent bundle T ∗M \M , which is T ∗M with the zero vectors removed. The

intuitive explanation of this exact sequence is that an essentially homogeneous function

f ∈ C∞(T ∗M ) of order m, which satisfies locally (up to a compactly supported error),

f(x,λξ) = λmf(x, ξ), λ, |ξ| ≥ 1,

clearly defines a function on S∗M . The map σ0 in the exact sequence selects the part of

the symbol of the classical pseudodifferential operator that is essentially homogeneous of

order m and produces the corresponding function on S∗M .

Turning this around, such exact sequences can be used to define principal symbols. For

example, since on compact manifolds the operators Ψ−1(M) are compact, a map like σ0

above, now mapping from order zero operators into the Calkin algebra B(H)/K(H), is

the basis for a paradigm called the C∗-algebraic approach to the principal symbol [Cor79;

SZ18; MSZ19; KSZ24a].

Furthermore, it should be emphasised that there are by now many different pseudodif-

ferential calculi, in different settings, for different purposes, all generalising differential

operators in a different way. Fundamentally, these various pseudodifferential calculi are

crafted for studying different classes and aspects of PDEs. On both Euclidean space

and on manifolds, various symbol classes have been used as a base (variations of Defi-

nition 1.2.1) [BF73; Bon13; NR10]. Other directions of research include pseudodifferen-

tial calculi on the Heisenberg group [BFG12; FR14], Lie groups [Mel83; Tay84; MS86;

RT10], Lie groupoids [MP97; NWX99], and types of manifolds like manifolds with bound-
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aries [Mel91; Mel93; MM98], Heisenberg manifolds [BG88; Tay84; Pon08], and filtered

manifolds [EY19; AMY22; FFF24].

In this thesis, we will focus on a very general abstract pseudodifferential calculus which

strips away any reference to a geometric space. It is the purely operator theoretical skeleton

at the basis of any pseudodifferential calculus, and as such it is difficult to give accurate

credits towards its invention. Elements of this theory even predate the study of pseu-

dodifferential operators via the symbol calculus by Kohn–Nirenberg [KN65] and Hörman-

der [Hör67]. The abstract Sobolev spaces in this theory already appeared in their current

form in work by S. G. Krein where they are called Hilbert scales, see the reviews [Mit61;

KP66] and references therein. Later, Guillemin [Gui85], Connes–Moscovici [CM95] and

Higson [Hig04] amongst others have used general pseudodifferential calculi. Of these,

Connes and Moscovici introduced the formalism in NCG.

The basic principle is as follows. We take one operator Θ as reference, a self-adjoint

boundedly invertible operator on a separable Hilbert space H. With this operator, define

the Sobolev spaces

Hs(Θ) := dom Θs∥·∥s , ∥ξ∥s := ∥Θsξ∥H, s ∈ R,

clearly inspired by the Bessel potential Sobolev spaces from before. And as before, here

dom Θs is defined via the functional calculus for unbounded self-adjoint operators [Sch12,

Section 5.3], which is complete in the norm ∥ · ∥s for s ≥ 0 but not for s < 0. Our ‘pseu-

dodifferential operators’ are simply operators on H which extend or restrict to bounded

maps

T : Hs+r(Θ) → Hs(Θ), s ∈ R,

in a consistent and well-defined way. These operators are denoted by opr(Θ), sometimes

called operators of analytic order (less than) r [Hig04].

In this calculus, there is no notion of symbols, which is at once a strength and a weakness:

we will not be able to use any techniques based on symbol manipulations, but as a conse-

quence results are valid in any pseudodifferential calculus. And, importantly, this makes

16



1.2. PSEUDODIFFERENTIAL OPERATORS

the pseudodifferential calculus perfectly adapted for noncommutative geometry where we

do not want to interact directly with a geometric base space in the first place.

Some properties of this calculus have been compiled in [Uuy11]. The following concrete

examples of this abstract pseudodifferential calculus are borrowed from the exposition

in [HMN24] (joint work of the author with Edward McDonald and Teun van Nuland).

• As remarked before, taking Θ = (1 − ∆)
1
2 on L2(Rd) gives the classical (Bessel

potential) Sobolev spaces Hs = W s
2 (R

d). (Pseudo)differential operators of order k,

and (unbounded) Fourier multipliers Tϕ with symbols |ϕ(ξ)| ≲ (1 + |ξ|)k, ξ ∈ Rd

are contained in opk(1 − ∆)
1
2 . Note though that op(1 − ∆)

1
2 is a much larger class

than this, and for example also contains translation operators.

• For spectral triples (A, H,D), taking Θ = (1+D2)
1
2 recovers the calculus of Connes

and Moscovici as used in noncommutative geometry [CM95].

• Taking Θ = (1 − ∆)
1
2 , where ∆ is the sub-Laplacian on a stratified Lie group, gives

the Sobolev spaces defined by Folland and Stein [FS74; RS76].

• Related to the previous example is the anharmonic oscillator Θ2 = 1 + ∆2l + |x|2k

on Rd for integers l, k ≥ 1 and generalisations thereof, which define Sobolev spaces

and a pseudodifferential calculus that appear in the study of sub-Laplacian operators

on stratified Lie groups too [CDR21]. The special case where Θ2 is the harmonic

oscillator gives Shubin’s Sobolev spaces Qs(Rd) [Shu01, Section IV.25] and the Γ-

pseudo-differential operators in [NR10, Chapter 2], see also [BT06].

• In the aforementioned pseudodifferential calculus in Van Erp–Yuncken [EY19], and

Androulidakis–Mohsen–Yuncken [AMY22] on filtered manifolds, Sobolev spaces are

constructed with a similar procedure.

• A similar calculus has been constructed for quantum Euclidean spaces [GJM22].

• Finally, we note the case where Θ = 1H, which gives that Hs = H for all s ∈ R, and

opr(1H) = B(H), r ∈ R.
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It is a basic fact that the square of an operator in opm(Θ) is an operator in op2m(Θ),

but what can be said of its square root? More generally, one can wonder for which type

of abstract pseudodifferential operators and class of functions there exists a well-behaved

functional calculus within the framework of this abstract pseudodifferential calculus. In

Chapter 2, we resolve this question by defining abstract elliptic pseudodifferential opera-

tors, and provide a functional calculus for these operators based on the preprint [HMN24].

1.3 Multiple operator integrals

To an extent, we have physicists to thank for the field of multiple operator integrals. To

see their ingenuity in manipulating operator integrals, simply open any book on Quan-

tum Field Theory. For example, chances are that you will encounter the time-dependent

operator

V (t) = eitH0e−it(H0+HI ), t ∈ R,

where H0 and HI are unbounded self-adjoint operators on a Hilbert space, which is ex-

panded by the Dyson series [Fol08, Chapter 6]

V (t) ∼ I +
∞∑
n=1

Vn(t),

where

Vn(t) =
1
in

∫ t

0

∫ τn

0
· · ·
∫ τ2

0
eiτnH0HIe

i(τn−1−τn)H0HI · · · ei(τ1−τ2)H0HIe
−iτ1H0 dτ1 · · · dτn.

Of course, the symbols ‘=’ and ‘∼’ in these formulas mean something different to physicists

than they do to mathematicians, and making these identities mathematically rigorous

requires some effort. The subject of Multiple Operator Integration provides a rigorous

foundation for identities like the Dyson series above and generalisations thereof. We will

mostly follow [Pel16; ST19] in this overview, but see also [PWS02; BS03; ACDS09] for

important developments of the subject.

Suppose that we are interested in the Gâteaux derivative

d

dt

∣∣∣∣∣
t=0

f(A+ tB) = lim
h→0

f(A+ hB) − f(A)

h
,

18
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for A,B ∈ B(H) and some holomorphic function f : C → C (using the holomorphic

functional calculus), taking the limit with respect to the operator norm. Picking a contour

γ in the complex plane which encircles counterclockwise the union of the spectra of A+ tB

for t ∈ (−ε, ε), we have

f(A+ tB) =
1

2πi

∫
γ
f(z)(z −A− tB)−1 dz, t ∈ (−ε, ε),

as a B(H)-valued Bochner integral. Using the resolvent identity, we have that

d

dt

∣∣∣∣∣
t=0

(z −A− tB)−1 = lim
t→0

(z −A− tB)−1 − (z −A)−1

t

= lim
t→0

(z −A− tB)−1B(z −A)−1

= (z −A)−1B(z −A)−1.

Similarly, for the holomorphic function f above we can see that

1
n!

dn

dtn

∣∣∣∣∣
t=0

f(A+ tB) =
1

2πi

∫
γ
f(z)(z −A)−1B(z −A)−1B · · · (z −A)−1 dz, (1.3)

where we have an alternating product of n+ 1 factors of (z−A)−1 and n factors of B. In

case A and B commute, this formula simply reduces to

dn

dtn

∣∣∣∣∣
t=0

f(A+ tB) = f (n)(A)Bn.

When they do not, we can devise a way to describe the right-hand side of (1.3). First

define the divided differences f [n] : Cn+1 → C by

f [0](λ) := f(λ),

f [n](λ0, . . . ,λn) :=
f [n−1](λ0, . . . ,λn−1) − f [n−1](λ1, . . . ,λn)

λ0 − λn
, λ0, . . . ,λn−1,λn ̸= λ0 ∈ C,

defining f [n] with an appropriate limit when λ0 = λn, so that

f [n](λ, . . . ,λ) = 1
n!
f (n)(λ), λ ∈ C.

By similar resolvent manipulations as before, it can be shown that for our holomorphic

function f , for a contour γ encircling λ0, . . . ,λn ∈ C counterclockwise,

f [n](λ0, . . . ,λn) =
1

2πi

∫
γ
f(z)(z − λ0)

−1 · · · (z − λn)
−1 dz.
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Hence, intuitively, the expression on the right-hand side of (1.3) is something like f [n](A, . . . ,A)

with factors of B spliced ‘in-between’ the n+ 1 copies of A.

Richard Feynman dealt with the issue [Fey51] by defining a clever system of notation

2
A

1
B

3
C := BAC.

In this notation, we formally have

dn

dtn
f(A+ tB) = f [n](

1
A,

3
A, . . . ,

2n+1
A )

2
B

4
B · · ·

2n
B.

Obviously, this needs serious work to make well-defined and rigorous, see [Fey51; Mas76][KM93,

Appendix I][Jef04, Chapter 7]. Daletskii has made some historical comments on this mat-

ter [Dal98].

A different approach, originally developed for studying evolution equations in Hilbert

spaces, was devised by Daletskii and S. G. Krein [DK51; DK56; Dal98], elements of which

had already appeared independently in work by Löwner [Löw34]. Their work was continued

by Birman–Solomyak [BS66; BS67; BS73; BS03], Pavlov [Pav71], Sten’kin [SS71; Ste77],

and Peller [Pel06; Pel16]. See also [ACDS09; PWS02; ST19]. Given a function ϕ : Rn+1 →

C, they define operators corresponding to the formal expression

TH0,...,Hn

ϕ (V1, . . . ,Vn) :=
∫
σ(H0)×···×σ(Hn)

ϕ(λ0, . . . ,λn) dE0(λ0)V1dE1(λ1) · · ·VndEn(λn),

where dEi is the spectral measure of the self-adjoint operator Hi. While, like Feynman’s

approach, this too is only formal notation, in various settings it can be made precise. An

important class of examples is the following [Pel06; Pel16]. Assume that ϕ : Rn+1 → C

can be written as

ϕ(λ0, . . . ,λn) =
∫

Ω
a0(λ0,ω) · · · an(λn,ω) dν(ω), (1.4)

where (Ω, ν) is a finite measure space, and the functions ai : R × Ω → C are bounded

and measurable. Then we can define

TH0,...,Hn

ϕ (V1, . . . ,Vn)ψ :=
∫

Ω
a0(H0,ω)V1a1(H1,ω) · · ·Vnan(Hn,ω)ψ dν(ω), ψ ∈ H,

(1.5)
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as an H-valued Bochner integral, where V1, . . . ,Vn ∈ B(H) and H0, . . . ,Hn are self-

adjoint. Peller proved that this defines a well-defined bounded operator, independent

of the representation (1.4) chosen [Pel06; Pel16]. Furthermore, he proved that for func-

tions f : R → C in the Besov space Bn
∞,1(R), we have that the divided difference f [n] is

of the appropriate form and hence TH0,...,Hn

f [n] (V1, . . . ,Vn) can be defined. If furthermore

f ∈ Bn
∞,1(R) ∩B1

∞,1(R) and f [n] is bounded, the formula

1
n!

dn

dtn

∣∣∣∣∣
t=0

f(A+ tB) = TA,...,A
f [n] (B, . . . ,B)

can be justified for unbounded self-adjoint A and bounded self-adjoint B [Pel06, Theo-

rem 5.6]. The operators TH0,...,Hn

ϕ (V1, . . . ,Vn) are called multiple operator integrals, and

when n = 1 they are often called double operator integrals.

Multiple and double operator integrals (MOIs and DOIs) are not only useful for studying

derivatives, but they also come with the identities

[f(A),B] = TA,A
f [1]

([A,B]),

f(A) − f(B) = TA,B
f [1]

(A−B),
(1.6)

as well as higher-order analogues. This indicates that DOIs and MOIs can appear in

many settings, and this framework has indeed been a powerful formalism in functional

analysis. The technique has been crucial in Potapov and Sukochev’s proof of the long-

standing conjecture that Lipschitz functions are operator Lipschitz on the Schatten classes

Lp, 1 < p < ∞ [PS11], that is, the estimate

∥f(A) − f(B)∥p ≤ Cp,f∥A−B∥p, 1 < p < ∞.

The case 0 < p < 1 has been studied in [MS22]. DOIs have similarly been used to provide

different kinds of sharp operator estimates [AP10; AP16; CMPS14; CPSZ19]. Further-

more, MOIs are used in the study of spectral flow and the spectral shift function [ACS07;

PSS13], and in many other areas of functional analysis like Biane–Speicher’s stochastic

analysis and their free Itô formula [BS98; Nik22].

A useful consequence of the two identities (1.6) (and their higher-order analogues) is a
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noncommutative Taylor expansion:

f(D+ V ) ∼
∞∑

n,m=0

∑
m1+···+mn=m

Cm1,...,mn

(n+m)!
δm1
D (V ) · · · δmn

D (V )f (n+m)(D), (1.7)

where δD(V ) := [D,V ], and Cm1,...,mn are some combinatorial constants specified below

in Section 3.5. If the operators D and V happen to commute, this reduces to a standard

Taylor expansion. These Taylor expansions should for now be interpreted as purely formal,

but they have been made rigorous for classical pseudodifferential operators on manifolds

and in Banach algebras [Pay07; Pay11; HL24]. We too will prove a precise version of the

noncommutative Taylor expansion for pseudodifferential operators in Chapter 3, using the

abstract pseudodifferential calculus described in Section 1.2.

For us, MOIs connect to the other themes of this dissertation due to their appearance

in noncommutative geometry, which has at times gone unrecognised. Take for example

the JLO cocycle [JLO88], which functions in NCG as the noncommutative analogue of

the Chern character in differential geometry. Given an even spectral triple (A, H,D)

with grading γ, the JLO cocycle is a collection of functionals (ϕ0,ϕ2,ϕ4, . . .) where ϕn :

A⊗n+1 → C is defined as

ϕn(a0 ⊗ a1 · · · ⊗ an) :=
∫

Σn
Tr(γa0e−t0D2

[D, a1]e
−t1D2 · · · [D, an]e−tnD2

) dt.

Here, Σn is the n-simplex with normalised Lebesgue measure dt. Comparing this expres-

sion with (1.5), it is not difficult to see that we have

ϕn(a0, a1, . . . , an) = Tr(γa0T
D2,...,D2

f [n] ([D, a1], . . . , [D, an])),

where f(x) = exp(−x).

This cocycle is a cornerstone of the local index formula, a landmark result in NCG which

generalises the Atiyah–Singer index theorem to noncommutative spaces. For this result

by Connes and Moscovici [CM95], there exist by now several different proofs [Hig04;

CPRS06a; CPRS06b; CPRS08; CPRS13]. Stemming from manipulations of the JLO

cocycle, these papers contain many elaborate and technical arguments involving operator

integrals. The theory of MOIs can potentially be used to simplify these arguments. In

fact, the original statement of the local index formula already suggests this possibility.
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Theorem 1.3.1 (Local index formula [CM95]). Let (A, H,D) be an odd unital spectral

triple with simple dimension spectrum, such that D−1 ∈ Lp,∞ for some p > 0. The

following functionals ϕn : A⊗n+1 → C define a cocycle (ϕ1,ϕ3,ϕ5, . . .) in the (b,B)-

bicomplex of A:

ϕn(a0, . . . , an) =
√

2i
∑

q≥0,kj≥0
cn,k,qτq

(
a0δ

k1
D2([D, a1]) · · · δkn

D2([D, an])|D|−(n+2
∑

kj)
)
,

where cn,k,q are some constants, and τq(T ) := resz=0z
q Tr(T |D|−2z). The cohomology

class of the cocycle (ϕ1,ϕ3,ϕ5, . . .) in HCodd(A) coincides with the cyclic cohomology

Chern character ch∗(A, H,D).

Even without knowing what a simple dimension spectrum, (B, b)-cocycles, cyclic coho-

mology, or the Chern character are, one can see that the cocycle defined in this theorem

involves something resembling a noncommutative Taylor expansion (1.7). In fact, it more

closely resembles an expansion of a single MOI, which we will see in Chapter 3 of this

thesis (Proposition 3.5.2).

The occurrence of MOI arguments in NCG is not limited to proofs of the local index

formula. They also appear in expansions of the spectral action [Skr14; Skr18; Sui11; NS22]

and the heat trace (often studied for a noncommutative analogue of curvature) [CT11;

FK12; FK13; CM14; DS15; LM16; KS18; Liu18; CF19; Liu22; NSZ25]. See [FK19] for a

review of the topic of curvature in NCG. An important tool in the area of these curvature

computations is the rearrangement lemma [CT11; CM14; Les17; HL24], which is closely

related to MOIs. See [NSZ25] for an approach to curvature via multiple operator integrals.

The theory of MOIs can potentially be a useful tool in all these contexts in NCG, but there

is a hurdle to be taken. This is best illustrated by seeing what happens when one takes

a spectral triple (A, H,D) and applies an identity like (1.6) when the relevant operators

are D2 and a ∈ A like for the JLO cocycle:

[f(D2), a] = TD
2,D2

f [1]
([D2, a]).

Such manipulations of MOIs are (implicitly) common in the literature, and indeed nec-

essary to interpret the local index formula, Theorem 1.3.1, as a MOI expansion. The
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problem is that the operator [D2, a] appearing as an argument in the MOI on the right-

hand side is typically unbounded in NCG, and the theory of MOIs as in [Pel16; ST19]

is only equipped to deal with bounded arguments. In the NCG literature, many ad-hoc

arguments can be found to justify such integral manipulations [CPRS06a; CM95; Hig04],

but an overarching theory is missing.

In Chapters 2 and 3 of this thesis, this is resolved by developing a theory of multiple oper-

ator integrals for abstract pseudodifferential operators (introduced in Section 1.2), based

on joint work [HMN24] with Edward McDonald and Teun van Nuland. Our results ex-

tend those by Paycha [Pay11] who proved a noncommutative Taylor expansion for classical

pseudodifferential operators on manifolds, and are comparable to those by Hartmann and

Lesch [HL24] on Banach spaces. Our results are more general than those of Paycha, both

in terms of the functions and the operators considered, and more closely adapted to oper-

ators appearing in NCG than those in [HL24]. Furthermore, while the Paycha, Hartmann

and Lesch papers prove Taylor expansions, our fundamental construction of MOIs also

systematises the underlying techniques involving operator integrals that are widespread in

NCG, allowing to justify the arguments illustrated above involving unbounded operators.

As a demonstration of the power and adaptability of this formalism, Chapter 3 resolves an

open question regarding the existence of certain asymptotic expansions in spectral triples,

posed by Eckstein and Iochum [EI18].

1.4 Connes’ integral formula

The fact that Riemannian manifolds can be completely captured by spectral triples, indi-

cates that there must be a way to integrate functions on manifolds spectrally. Alain Connes

recognised that Dixmier traces, or more general singular traces, are the appropriate tool.

The Dixmier trace was originally constructed as an example by Dixmier [Dix66], which

settled in the negative the question whether the operator trace is (up to constants) the

only trace that can be defined on B(H). With trace we mean a linear functional ϕ : J → C

24



1.4. CONNES’ INTEGRAL FORMULA

on a two-sided ideal J ⊆ B(H) which vanishes on commutators,

ϕ([A,B]) = 0, A ∈ J ,B ∈ B(H).

See [SU16] for details on Dixmier’s original construction. We will take a different approach,

following [LSZ21; LMSZ23].

Definition 1.4.1. The weak Schatten class Lp,∞ ⊆ B(H), p > 0, consists of those compact

operators A for which

λ(k, |A|) = O(k− 1
p ), k → ∞,

where for a compact operator T we write {λ(k,T )}∞
k=0 for an eigenvalue sequence of T

counted with algebraic multiplicity, ordered in decreasing modulus. These sets are two-sided

ideals in B(H). The ideal L1,∞ is called the weak trace-class ideal.

Definition 1.4.2. An extended limit ω ∈ (ℓ∞(N))∗ is a continuous positive linear func-

tional on ℓ∞(N) such that ω(1) = 1, and for each sequence x ∈ ℓ∞(N) that converges to

zero, we have ω(x) = 0.

Associated with each extended limit ω, we can define the Dixmier trace Trω : L1,∞ → C by

Trω(A) := ω

({
1

log(n+ 2)

n∑
k=0

λ(k,A)
}∞

n=0

)
.

In general, the value of Trω(A) may depend on the choice of ω. If it does not, we call

A Dixmier measurable. Note that there is some inconsistency in the literature on the

definition of Dixmier measurable operators, we follow [LSZ21]. See also [SUZ13; Usa13].

At first sight, it might come as a surprise that the Dixmier traces are linear maps or even

traces. It is furthermore a crucial fact that they vanish on the finite-rank operators (a

forteriori, on L1), a property which characterises so-called singular traces.

There is a rich mathematical theory surrounding Dixmier traces and their more general

cousins the singular traces. Originally Dixmier [Dix66], and later Connes [Con88][Con94,

Section 4.2], required additional properties of the extended limits ω like dilation invariance

in their definitions of the Dixmier trace, and defined these on a larger ideal M1,∞ which

25



CHAPTER 1. INTRODUCTION

is now sometimes called the Macaev–Dixmier ideal. There are many subtle points to be

made regarding these differing definitions, or the question when different extended limits

define the same Dixmier trace, or what the sufficient and necessary conditions are for

an operator to be Dixmier measurable and more. For these subtleties we refer to the

books [LSZ21; LMSZ23] and the many references therein.

The most important result illustrating that Dixmier traces can be used for integration,

comes from Connes’ trace theorem [Con88]. This provides that the noncommutative

residue (sometimes called Wodzicki residue or Wodzicki–Guillemin residue) for order −d

classical pseudodifferential operators on d-dimensional manifolds can be given by a Dixmier

trace.

If we equip M with a Riemannian metric g, and consider the operator Mf (1 − ∆g)− d
2

on L2(M), where f ∈ C∞
c (M) and ∆g is the Laplace–Beltrami operator, Connes’ trace

theorem reduces to Connes’ integral formula.

Theorem 1.4.3 (Connes’ integral formula [Con88]). Let M be a d-dimensional Rieman-

nian manifold. For all f ∈ C∞
c (M), we have that Mf (1 − ∆g)− d

2 ∈ L1,∞, and for all

extended limits ω ∈ ℓ∗∞

Trω(Mf (1 − ∆g)− d
2 ) =

Vol(Sd−1)

d(2π)d
∫
M
f dνg, f ∈ C∞

c (M). (1.8)

For compact manifolds and Rd, this theorem admits a generalisation to all singular traces

on L1,∞ (not just Dixmier traces), and all f ∈ L2(M), see [LPS10; KLPS13], [LSZ21,

Chapters 7, 8] and [LMSZ23, Chapters 2, 3]. Interestingly, f ∈ L2(M) is both necessary

and sufficient for (1.8) to hold [LPS10; KLPS13], illustrating that an extension to L1(M)

is impossible as mistakenly claimed in [GVF01, Corollary 7.22].

The state of the art for Connes’ integral formula can be found in [LSZ20b], supplemented

by [ZS23]. By modifying the left-hand side of (1.8) to the symmetric expression

ϕ((1 − ∆g)− d
4Mf (1 − ∆g)− d

4 ),

where ϕ is a singular trace on the aforementioned Dixmier–Macaev ideal M1,∞, these

papers extend Connes’ integral formula to functions f in certain function spaces which
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include the space Lp(M) for p > 1 (on a compact manifold M). Even in this approach,

an extension to L1(M) is demonstrably impossible [LPS10, Lemma 5.7].

In the field of noncommutative geometry, Connes’ integral formula is of significant philo-

sophical importance. It justifies that for d-summable spectral triples (A, H,D) (meaning

that (1 +D2)− d
2 ∈ L1,∞), the functional

a 7→ Trω(a(1 +D2)− d
2 ), a ∈ A,

can be interpreted as a noncommutative integral, which allows us to talk about integration

on a noncommutative space. After all, for a spectral triple the operator D2 functions as

the analogue of the Laplace operator (see Section 1.1). We refer to [LS10; LSZ21; LMSZ23]

for thorough studies of the noncommutative integral in this context.

The philosophy goes deeper, however. The integral formula shows that the Lebesgue mea-

sure can be completely ‘recovered’ from operator based computations with Dixmier traces.

It has led Connes to craft a paradigm where he considers compact operators to be infinites-

imals, with the weak trace-class L1,∞ being infinitesimals of order 1, and the Dixmier trace

being the integral [Con94]. This ‘quantised calculus’ is a completely operator-theoretical

approach to integration theory. In the words of Alain Connes: “I believe that most inte-

grals that we know of, are special cases of this” [Con21], i.e. are computable via a Dixmier

trace.

These Dixmier trace formulas have some advantages over the usual approach to integration.

Due to the nature of the Dixmier trace, properties like convergence or positivity of an

integral are easy to see on the operator-theoretical side. Furthermore, its robustness

towards trace-class perturbations (recall that Trω(T ) = 0 if T is trace-class) can lead to

deductions about similar robustness properties for the integral in question [Con94, p.558].

It should be remarked that in the noncommutative geometry literature, a popular alter-

native definition for the noncommutative integral is the functional

a 7→ −
∫
a(1 +D2)

s
2 := ress=0 Tr(a(1 +D2)

1+s
2 ), a ∈ A.
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Whenever s 7→ ζa,D(s) := Tr(a(1+D2)
1+s

2 ) can be extended meromorphically to a neigh-

bourhood of the origin, we have for all extended limits ω ∈ ℓ∗∞ [LSZ21, Theorem 9.1.5(a)]

ress=0 Tr(a(1 +D2)
1+s

2 ) = Trω(a(1 +D2)
1
2 ).

In general, however, it need not be the case that ζa,D allows such an extension, in which

case −
∫
a(1+D2)

1
2 is not well-defined. Counterexamples are given in [CS12, Lemma 17][KLPS13,

Corollary 6.34, Corollary 7.23][LSZ21, Example 9.3.3], of which [KLPS13, Corollary 6.34,

Corollary 7.23] is notable for providing an example on a d-dimensional manifold of a

compactly supported pseudodifferential operator of order −d with such behaviour. See

also [LSZ21, Chapters 8, 9] for extensive analysis on the relation between the Dixmier

trace and residue formulas. Throughout this thesis, to maintain maximal generality, we

will stick with the Dixmier trace formulation of the noncommutative integral.

In Chapter 4, the noncommutative integral is studied in relation to the paradigm of spectral

truncations in NCG due to Connes and Van Suijlekom [CS21; CS22]. The result provides a

vehicle to relate NCG to a field of mathematics called Quantum Ergodicity. In Chapters 5

and 6, we provide a Dixmier trace formula for integrals with respect to a measure called

the density of states, on respectively discrete metric spaces and open manifolds based on

the papers [Aza+22; HM24a], validating Connes’ mantra in this context.

1.5 Density of states

Parts of this section are borrowed from [Aza+22; HM24a], respectively a joint work with

Nurulla Azamov, Edward McDonald, Fedor Sukochev and Dmitriy Zanin, and a joint work

with Edward McDonald.

Many electrical and thermal properties of a material can be deduced from its associated

density of states (DOS), a construction in solid-state physics. Loosely speaking, the DOS

describes how many quantum states are admitted for the electrons in the material at each

energy level per unit volume. Over the years the topic has kept of plenty of mathematicians

and mathematical physicists occupied, see for example the books [PF92; Ves08; AW15].
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The rigorous definition of the DOS already takes some effort, and there exist differing

approaches. In this thesis we follow Simon [Sim82, Section C]. Given a (possibly un-

bounded) lower-bounded self-adjoint operator H on the Hilbert space L2(X) where X is

some metric space with a Borel measure written as | · |, we consider the limits

lim
R→∞

1
|B(x0,R)|Tr(f(H)MχB(x0,R)

), f ∈ Cc(R),

where B(x0,R) denotes the closed ball with center x0 ∈ X and radius R, and χB(x0,R) is

its indicator function. When these limits exist (this includes assuming that f(H)MχB(x0,R)

is trace-class in the first place), we have a positive linear functional on Cc(R) and hence,

via the Riesz–Markov–Kakutani theorem, we obtain a Borel measure νH on R [Sim82,

Proposition C.7.2] such that

lim
R→∞

1
|B(x0,R)|Tr(f(H)MχB(x0,R)

) =
∫

R
f dνH , f ∈ Cc(R).

This measure, if it exists, is what we call the density of states of the operator H. This essen-

tially coincides with similar definitions elsewhere in the literature, at least for Schrödinger

operators on Euclidean space [Sim82]. Important to observe is that while we define the

DOS via increasing balls, in principle we could also consider taking another increasing

sequence of sets {Ωn}n∈N. However, the DOS in general depends on the choice of this

increasing sequence of sets, even for Schrödinger operators with radially homogenous po-

tentials on Rd [AMSZ22].

Apart from its origin in physics, the density of states can be considered as a substitute for

the spectral counting function [Str12] which featured in Section 1.1,

N(λ) := #{k : λk ≤ λ} = Tr(χ(−∞,λ](H)),

in case H does not have discrete spectrum. Indeed, when X has finite diameter and

|X| < ∞, every self-adjoint operator H with compact resolvent admits a DOS and we

have

νH(−∞,λ] = N(λ)

|X|
.

Common research areas for studying the DOS are its existence [AW15; BS91; CL90;

DIM01; PF92; Shu79; Sim82], the analytical properties of the function λ 7→ νH(−∞,λ] [AW15;
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BK13; CL90; PF92] and its asymptotic behaviour as λ approaches boundaries of the sup-

port of νH [AW15; BK13; CL90; Lan91; PF92]. The study of the Anderson localisation

phenomenon, of interest to mathematical physicists, is inseparably related to the study of

the density of states [AW15; CL90; Lan91].

The DOS can be connected to NCG, which will be the focus of the studies of the DOS

in this dissertation. Connes’ mantra that most integrals can be computed with Dixmier

traces was mentioned in Section 1.4, and since the DOS is a measure associated with

operators, it is a good case study for Connes’ philosophy. This was first observed and

investigated by Nurulla Azamov, Edward McDonald, Fedor Sukochev and Dmitriy Zanin

on Rd for Schrödinger operators [AMSZ22].

Let us consider the Laplacian on Rd, ∆ =
∑d
j=1 ∂

2
j . We know that the classical Weyl law

covered in Section 1.1 (equation (1.1)) gives for the Laplacian ∆Ω on a bounded domain

Ω ⊆ Rd with Dirichlet boundary conditions, that

Tr(χ(−∞,λ](−∆Ω)) ∼ Vol(Sd−1)

d(2π)d Vol(Ω)λ
d
2 , λ → ∞.

It might therefore not come as a surprise that we have the limit

lim
R→∞

1
|B(x0,R)| Tr(χ[−∞,λ)(−∆)MχB(x0,R)

) =
Vol(Sd−1)

d(2π)d λ
d
2 , λ > 0,

where we now have an exact equality instead of an asymptotic identity. See [Str12] for a

precise proof. In fact, the Laplacian admits a DOS ν−∆ which satisfies

ν−∆(−∞,λ] = Vol(Sd−1)

d(2π)d λ
d
2 , λ > 0, (1.9)

and more generally,

dν−∆(λ) =
Vol(Sd−1)

2(2π)d λ
d
2 −1dλ, λ > 0, (1.10)

where dλ is the Lebesgue measure on R, see e.g. [Sim82; Str12; AMSZ20]. The func-

tion (1.9) is sometimes called the integrated DOS.

The following argument was presented in [AMSZ22]. Recall Connes’ integral formula

(Theorem 1.4.3), which gives for any extended limit ω ∈ ℓ∗∞,

Trω(Mf (1 − ∆)− d
2 ) =

Vol(Sd−1)

d(2π)d
∫

Rd
f(x) dx, f ∈ Cc(R

d).
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Since the Dixmier trace is invariant under unitary transformations, we can perform a

Fourier transform on the left-hand side to deduce that

Trω(f(−i∇)M−d
⟨x⟩ ) =

Vol(Sd−1)

d(2π)d
∫

Rd
f(x) dx, f ∈ Cc(R

d).

Suppose now that f is radially symmetric and f(x) = g(|x|2) for a continuous compactly

supported function g ∈ Cc[0, ∞). Then, f(−i∇) = g(−∆), and switching to spherical

coordinates we get

Trω(g(−∆)M−d
⟨x⟩ ) =

Vol(Sd−1)

d(2π)d
∫

Rd
g(|x|2) dx

=

(
Vol(Sd−1)

)2

d(2π)d
∫ ∞

0
g(r2)rd−1 dr

=

(
Vol(Sd−1)

)2

2d(2π)d
∫ ∞

0
g(λ)λ

d
2 −1 dλ.

Hence, we find that

Trω(g(−∆)M−d
⟨x⟩ ) =

Vol(Sd−1)

d

∫
R
g(λ) dν−∆(λ), g ∈ Cc(R), (1.11)

which is a Dixmier trace formula for the DOS of the Laplacian. The results of [AMSZ22]

extend the identity (1.11) to Schrödinger operators −∆ +MV which admit a DOS and

where V ∈ L∞(Rd) is real-valued.

Chapters 5 and 6 in this thesis focus on extending formula (1.11) to discrete metric spaces

and manifolds respectively, based on the papers [Aza+22; HM24a].The DOS in these

settings has previously been studied, as discrete spaces can serve as a model or a discrete

approximation [AW15; AO82; BK13; CL90; Cha+86; Hof93; KM06; PF92; Ves05; Weg81],

and manifolds allow studying the DOS in even greater generality [AS93; LPPV08; LPV04;

PV02; Ves08].

Furthermore, a link between the DOS and Dixmier traces has previously appeared in the

influential work by Bellissard, van Elst and Schulz-Baldes [BES94], which provides an

NCG explanation of the quantum Hall effect. Noting the relation between Dixmier traces

and ζ-function residues [LSZ21], a result by Bourne and Prodan [BP18, Lemma 6.1] also

bears some resemblance to formula (1.11).
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A notorious aspect of the DOS is that the existence of the DOS cannot be guaranteed in

general situations. One advantage of the Dixmier trace formula (1.11) is that the Dixmier

trace on the left-hand side is guaranteed to be well-defined even if the DOS itself has not

been shown to exist. In fact, it can be interpreted as a generalisation of the definition of

the DOS. This is unlikely to be any good if this ‘DOS’ depends on the choice of extended

limit, so one might at least require g(H)M−d
⟨x⟩ to be Dixmier measurable. In Chapter 5 we

will confirm on discrete spaces that this is a strictly weaker requirement than existence of

the DOS, but in other settings and for Schrödinger type operators it is not yet precisely

known what the relation is between Dixmier measurability and existence of the DOS.

Finally, the Dixmier trace formula allows questions regarding the DOS to be answered

with operator theoretical machinery. We will see examples of this in Chapters 5 and 6,

where questions like translation invariance of the DOS are answered in this manner. We

will also see a connection between the Dixmier trace formula for the DOS and index theory,

namely, Roe’s index theorem on open manifolds.

1.6 Preliminary material

This section serves as a brief overview of common notation, convention, and definitions

used throughout the rest of this dissertation. The covered material is standard and can be

found in [LSZ21; LMSZ23; Sim05]. Some of the content has been copied from [HM24a].

The natural numbers are by convention N = {0, 1, 2, . . .}. For functions f , g : R → R>0

(or with other appropriate domains and co-domains) we write

f(x) ∼ g(x), x → ∞,

to mean that

lim
x→∞

f(x)

g(x)
= 1.

All Hilbert spaces are assumed to be complex separable Hilbert spaces, denoted H, on

which the inner product ⟨·, ·⟩ is linear in its second component. The set of bounded op-
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erators on H is denoted by B(H) and the ideal of compact operators by K(H). The

operator norm on B(H) is denoted ∥ · ∥. For any compact operator T ∈ K(H), an eigen-

value sequence λ(T ) = {λ(k,T )}∞
k=0 is a sequence of the eigenvalues of T listed with

algebraic multiplicity, ordered such that {|λ(k,T )|}∞
k=0 is non-increasing. The singular

value sequence µ(T ) = {µ(k,T )}∞
k=0 of T is defined by

µ(k,T ) := λ(k, |T |), k ≥ 0.

Equivalently,

µ(k,T ) = inf{∥T −R∥ : rank(R) ≤ k}.

Let ℓ∞ denote the space of complex-valued bounded sequences indexed by N. For x ∈ ℓ∞,

we will denote by µ(x) = {µ(k,x)}∞
k=0 ∈ ℓ∞ the decreasing rearrangement of {|xk|}∞

k=0.

This is consistent with the notation for the singular value sequence of an operator in the

sense that if diag(x) is the operator given by a diagonal matrix with entries {xk}∞
k=0, then

µ(diag(x)) = µ(x).

For p, q ∈ (0, ∞), we define the Lorentz sequence spaces ℓp,q, ℓp,∞ and ℓ∞,q as the spaces

of sequences x ∈ ℓ∞ such that

∥x∥p,q :=

( ∞∑
k=0

(k+ 1)
q
p

−1
µ(k,x)q

) 1
q

< ∞,

∥x∥p,∞ := sup
k≥0

(k+ 1)
1
pµ(k,x) < ∞,

and

∥x∥∞,q :=

( ∞∑
k=0

(k+ 1)−1µ(k,x)q
) 1

q

< ∞,

respectively. The space ℓ∞,∞ is defined as ℓ∞,∞ := ℓ∞, and ℓp,p is denoted as ℓp. Using

the previously defined singular value sequences, we give the definition of the Lorentz ideals

Lp,q for p, q ∈ (0, ∞] as the quasi-normed spaces of compact operators T such that

∥T∥p,q := ∥µ(T )∥ℓp,q < ∞.

Like for the sequence spaces, Lp,p is denoted as Lp, and L∞,∞ := B(H). Indeed, consistent

with these definitions, the operator norm ∥ · ∥ on B(H) is sometimes denoted by ∥ · ∥∞ if

confusion might arise with other norms.
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The spaces Lp,q, 0 < p, q ≤ ∞ form two-sided ideals in B(H). The ideals Lp are called

Schatten classes, L1 is the familiar ideal of trace-class operators (on which we can define

the usual operator trace Tr), and L1,∞ is called the ideal of weak trace-class operators. The

ideal L2 is called the Hilbert–Schmidt class. All of these quasi-norms have the property

that, for p, q ∈ (0, ∞],

∥ABC∥p,q ≤ ∥A∥∞∥B∥p,q∥C∥∞, B ∈ Lp,q,A,C ∈ B(H).

In similar spirit, we define the following function spaces.

Definition 1.6.1. Let (X, Σ, ν) be a measure space. We write L∞(X) for the quotient

space

L∞(X) := {f : X → C measurable | ∥f∥∞ < ∞}
/

∼,

where ∥ · ∥∞ indicates the essential supremum, and f ∼ g if f(x) = g(x) ν-almost every-

where. We define similarly for 0 < p < ∞,

Lp(X) :=
{
f : X → C measurable | ∥f∥p :=

(∫
X

|f |p dν
) 1

p

< ∞
}/

∼ .

There is a way to define the spaces Lp,q(X) as well, and to furthermore see the spaces

Lp,q(X), Lp,q and ℓp,q as instances of a more general integration theory on von Neumann

algebras [DPS23]. We will not delve into that matter in this thesis though.

Let J be a two-sided ideal in B(H). A linear functional ϕ : J → C is called a trace if it

satisfies

ϕ(BT ) = ϕ(TB), T ∈ J ,B ∈ B(H).

This condition is equivalent with requiring

ϕ(U∗TU) = ϕ(T ), T ∈ J ,U ∈ U(H),

where U(H) are the unitary operators on H. Traces ϕ on J that vanish on finite-rank

operators called singular traces.

All traces on L1,∞ are singular traces. In contrast with the situation on L1, continuous

traces on L1,∞ are far from unique. A particular kind of continuous traces can be defined
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on L1,∞ which are called Dixmier traces, as covered in Section 1.4, repeated here for

convenience.

Definition 1.6.2. An extended limit ω ∈ (ℓ∞(N))∗ is a continuous positive linear func-

tional on ℓ∞(N) such that ω(1) = 1, and for each sequence x ∈ ℓ∞(N) that converges to

zero, we have ω(x) = 0.

Associated with each extended limit ω, we can define the Dixmier trace Trω : L1,∞ → C by

Trω(A) := ω

({
1

log(n+ 2)

n∑
k=0

λ(k,A)
}∞

n=0

)
.

In general, the value of Trω(A) may depend on the choice of ω. If it does not, we call A

Dixmier measurable [LSZ21].

More can be read about singular and Dixmier traces in [LSZ21; LMSZ23], for the topic of

measurability see [LSZ21; Usa13; SUZ13].

Definition 1.6.3. Given an operator 0 ≤ V ∈ B(H), an operator A ∈ B(H) is said to be

V -modulated if

sup
t>0

t
1
2 ∥A(1 + tV )−1∥2 < ∞. (1.12)

As can be seen from the definition, a V -modulated operator is necessarily Hilbert–Schmidt.

The importance of V -modulated operators comes from the following theorem, see [LSZ21,

Theorem 7.1.3]. We will make use of this theorem in Chapters 4 and 5.

Theorem 1.6.4. If V ∈ L1,∞(H) is strictly positive, T is V -modulated and {ek}∞
k=0 is

an orthonormal basis such that V ek = µ(k,V )ek, then as n → ∞,
n∑
k=0

λ(k,T ) =
n∑
k=0

⟨ek,Tek⟩ +O(1). (1.13)

Note that if 0 ≤ V ∈ L1,∞(H), then V is automatically V -modulated [LSZ21, Lemma

7.3.4], and if A is bounded and T is V -modulated, then AT is V -modulated, which directly

follows from (1.12).
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All manifolds in this thesis are smooth, oriented manifolds. The unique volume form on an

(oriented) Riemannian manifold (M , g) is written as νg, which is given in local coordinates

as

νg =
√

|det(g)|dx1 ∧ · · · ∧ dxd,

where d is the dimension of M . We then define L2(M) as in Definition 1.6.1. On L2(M) we

will often consider the Laplace–Beltrami operator ∆g, which is given in local coordinates as

∆gf =
1√

|det(g)|
∂i

(√
|det(g)|gij∂jf

)
, f ∈ C∞

c (M). (1.14)

When not mentioned otherwise, we will consider this operator on L2(M) as the Friedrichs

extension of (1.14) [Sch12, Chapter 10]. Explicitly, we put

dom ∆g = H2(M),

where Hk(M) are the standard Sobolev spaces on Riemannian manifolds, see e.g. [Tri92,

Chapter 7]. With this domain, ∆g is a negative self-adjoint operator on L2(M).
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Chapter 2

Functional calculus for abstract

pseudodifferential operators

Take care, and work harder.

Fedor Sukochev

This chapter has appeared in slightly modified form as part of the preprint [HMN24],

joint work with Edward McDonald and Teun van Nuland. We thank Dmitriy Zanin for

help with Proposition 2.3.4. The review of the abstract pseudodifferential calculus in

Section 2.1.1 contains established results, the results and definitions in the other sections

are novel. The main results of this chapter are the functional calculus for positive-order

pseudodifferential operators in Theorem 2.2.3, and the zero-order case in Theorem 2.3.7.

Much of the motivation for this chapter has already been covered in Sections 1.2 and 1.3.

We will look at a scale of Hilbert spaces {Hs}s∈R defined by a single operator Θ, which

is a very plain generalisation of Sobolev spaces. On this scale, operators can be defined

which map in some well-defined and consistent way

T : Hs+m → Hs, s ∈ R,

which forms a bare-bones abstract pseudodifferential calculus. We will develop a functional
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calculus for these operators, which will therefore be applicable to any pseudodifferential

calculus. Though this is interesting in its own right, we are motivated by developing

multiple operator integrals for these operators in Chapter 3, which in turn is motivated

by applications in noncommutative geometry.

Usually, defining a functional calculus for a pseudodifferential calculus involves elliptic

operators [Str72; MS87; Bon13]. We too will follow this strategy, although it breaks

down for zero-order operators. For the latter, we can instead directly apply work by

Davies [Dav95b; Dav95c].

2.1 Abstract pseudodifferential calculus

2.1.1 Review

First, the details of the abstract pseudodifferential calculus that we use. See also [KP66;

Dal67; CM95; Uuy11].

Definition 2.1.1. Let Θ be a possibly unbounded invertible positive self-adjoint operator

on a separable Hilbert space H. Define the Hilbert spaces Hs := dom Θs∥·∥s for s ∈ R

where ∥ϕ∥s := ∥Θsϕ∥ – noting that taking this completion is unnecessary for s ≥ 0. We

write H∞ :=
⋂
s≥0 Hs, which is dense in H.

This definition dates back to work by S. G. Krein, see the reviews [Mit61; KP66] and

references therein. Further developments were made in [Dal67; Bon67]. Furthermore, the

space H∞ is a ‘countably Hilbert space’ in the terminology of [GV64, Section I.3].

A quick first observation is that the embedding Hs ↪→ Ht is continuous for all s ≥ t. For

s > 0, there is a pairing between Hs and H−s given by

⟨u, v⟩(Hs,H−s) := ⟨Θsu, Θ−sv⟩H, u ∈ Hs, v ∈ H−s.

This pairing identifies H−s with the (continuous) anti-linear dual space of Hs and vice-

versa.

39



CHAPTER 2. FUNCTIONAL CALCULUS FOR ABSTRACT
PSEUDODIFFERENTIAL OPERATORS

The space H∞ =
⋂
s∈R Hs is a Fréchet space equipped with the norms ∥ · ∥s, s ∈ R. By

construction, H∞ ⊆ Hs for any s ∈ R, and in fact H∞ is dense in Hs. Since a subspace of

a separable metric space is itself separable it follows that every Hs admits an orthonormal

basis consisting of vectors in H∞.

We define H−∞ as the continuous anti-linear dual space of H∞, which can be identified

with

H−∞ =
⋃
s∈R

Hs. (2.1)

This is an LF -space, in the sense of [Trè67, Chapter 13]. From this perspective H∞ can

be interpreted as a Schwartz space and H−∞ as a space of distributions. In case Θ−1 ∈ Ls

for some s > 0, we have that the Gelfand triples H∞ ⊂ H ⊂ H−∞ and Hs ⊂ H ⊂ H−s

are ‘rigged Hilbert spaces’ in the terminology of [GV64, Section I.4].

Given u ∈ H∞ and v ∈ H−∞ it follows from (2.1) that v ∈ H−s for some particular s ∈ R.

It is immediate that u ∈ Hs, and we have

⟨u, v⟩(H∞,H−∞) = ⟨u, v⟩(Hs,H−s).

Proposition 2.1.2. The Sobolev spaces Hs in Definition 2.1.1 form an exact interpolation

scale. That is, let s0 ≤ s1, r0, r1 ∈ R, and let 0 < θ < 1. Set

sθ := (1 − θ)s0 + θs1, rθ = (1 − θ)r0 + θr1.

If T is a bounded linear map

T : Hs0 → Hr0 , T |Hs1 : Hs1 → Hr1 ,

then T |Hsθ is bounded from Hsθ to Hrθ for every θ. Moreover we have

∥T∥Hsθ →Hrθ ≤ ∥T∥1−θ
Hs0 →Hr0 ∥T∥θHs1 →Hr1 .

Proof. See [KP66]. Or, after identifying Hs with a weighted L2-space through the spectral

theorem, this follows from the Stein–Weiss interpolation theorem for Lp-spaces [BL76,

Theorem 5.4.1].

40



2.1.2 Adjoints

Definition 2.1.3. We say that a linear operator A : H∞ → H∞ is in the class opr(Θ) (it

has analytic order ≤ r) if A extends to a continuous operator

A
s+r,r : Hs+r → Hs

for all s ∈ R. If no confusion can arise, we often write

A : Hs+r → Hs.

Furthermore, op(Θ) :=
⋃
r∈R opr(Θ), and op−∞(Θ) :=

⋂
r∈R opr(Θ). We define OPr(Θ) ⊆

opr(Θ) as those A ∈ opr(Θ) for which δnΘ(A) ∈ opr(Θ) for each n ≥ 0, where δΘ(A) :=

[Θ,A].

Since Hs ↪→ Ht is continuous for all s ≥ t, it follows that opr(Θ) ⊆ opt(Θ) for r ≤ t. Both

op(Θ) and OP(Θ) :=
⋃
r∈R OPr(Θ) form a filtered algebra, as opr(Θ) ·opt(Θ) ⊆ opr+t(Θ)

and OPr(Θ) · OPt(Θ) ⊆ OPr+t(Θ).

Commonly, this paradigm is also used when dealing with unbounded operators

T : dom(T ) → H.

In this case, one writes T ∈ opr(Θ) if H∞ ⊆ dom(T ), T (H∞) ⊆ H∞, and

T |H∞ ∈ opr(Θ).

Conversely, for T ∈ opr(Θ) with r ≥ 0,

T
r,0 : Hr ⊆ H → H

can be interpreted as an unbounded operator. Furthermore, note that op−r(Θ) ⊆ B(H)

for r ≥ 0 in the sense that for A ∈ op−r(Θ) we have A
−r,0|H ∈ B(H). Similarly if

Θ−1 ∈ Ls(H), a Schatten class, then op−s(Θ) ⊆ L1(H).

2.1.2 Adjoints

Here we discuss various ways of defining the adjoint in opr(Θ).
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Definition 2.1.4. Let A ∈ opr(Θ) so that A extends to a bounded operator

A : Hs+r → Hs

for all s ∈ R.

1. The adjoint of A as an endomorphism of the topological vector space H∞ we denote

A† : H−∞ → H−∞

defined by the identity

⟨Au, v⟩(H∞,H−∞) = ⟨u,A†v⟩(H∞,H−∞), u ∈ H∞, v ∈ H−∞.

2. In similar fashion we denote the adjoint

A′s : H−s → H−s−r

defined by the relevant identity

⟨Au, v⟩(Hs,H−s) = ⟨u,A′sv⟩(Hs+r,H−s−r), u ∈ Hs+r, v ∈ H−s.

3. We define the Hermitian adjoint

A♭s : Hs → Hs+r

via the identity

⟨Au, v⟩Hs = ⟨u,A♭sv⟩Hs+r , u ∈ Hs+r, v ∈ Hs.

4. In case r ≥ 0, the map

A : Hs+r ⊆ Hs → Hs

is an unbounded operator on the Hilbert space Hs, so we define another Hermitian

adjoint

A∗s : Ds → Hs,

with domain

Ds := {u ∈ Hs | ∃v ∈ Hs∀ϕ ∈ Hs+r : ⟨u,Tϕ⟩Hs = ⟨v,ϕ⟩Hs},

such that

⟨Au, v⟩Hs = ⟨u,A∗sv⟩Hs , u ∈ Hs+r, v ∈ Ds.
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These adjoints are related in the following way.

Proposition 2.1.5. Let A ∈ opr(Θ). Then, for all s ∈ R,

1. A′s = A†
∣∣∣
H−s

;

2. A♭s = Θ−2s−2rA†Θ2s
∣∣∣
Hs

.

If r ≥ 0,

3. A∗s = Θ−2sA†Θ2s
∣∣∣
Ds

.

Proof. 1. Take u ∈ H∞ ⊆ Hs+r and v ∈ H−s ⊆ H−∞. Then

⟨Au, v⟩(Hs,H−s) = ⟨u,A′sv⟩(Hs+r,H−s−r)

= ⟨u,A′sv⟩(H∞,H−∞).

We also have

⟨Au, v⟩(Hs,H−s) = ⟨Au, v⟩(H∞,H−∞)

= ⟨u,A†v⟩(H∞,H−∞).

Hence it follows that

A′sv = A†v ∈ H−∞, v ∈ H−s.

2. Take u ∈ H∞, v ∈ Hs. Then on the one hand,

⟨Au, v⟩Hs = ⟨Au, Θ2sv⟩(H∞,H−∞)

= ⟨u,A†Θ2sv⟩(H∞,H−∞),

and on the other hand

⟨Au, v⟩Hs = ⟨u,A♭sv⟩Hs+r

= ⟨u, Θ2s+2rA♭sv⟩(H∞,H−∞).

We therefore find

A♭s = Θ−2s−2rA†Θ2s
∣∣∣
Hs

.
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3. Take u ∈ H∞, v ∈ Ds ⊆ Hs ⊆ H−∞. Then

⟨Au, v⟩Hs = ⟨Au, Θ2sv⟩(H∞,H−∞)

= ⟨u,A†Θ2sv⟩(H∞,H−∞),

and

⟨Au, v⟩Hs = ⟨u,A∗sv⟩Hs

= ⟨u, Θ2sA∗sv⟩(H∞,H−∞).

Hence

A∗s = Θ−2sA†Θ2s
∣∣∣
Ds

.

An important takeaway from this proposition is that if A : H∞ → H∞, we have a priori

that

A† : H−∞ → H−∞,

but if A ∈ opr(Θ) we have in fact that A† ∈ opr(Θ) (or, more precisely, A†
∣∣∣
H∞

∈ opr(Θ)).

It is now also clear that the Hermitian adjoints A♭s and A∗s in general cannot be regarded

as operators in op(Θ), as the operators A♭s and A♭t do not agree on the intersection

Hs ∩ Ht for s ̸= t, and the same holds for A∗s .

Proposition 2.1.6. If A ∈ opr(Θ), r ≥ 0, then

A : Hr ⊆ H0 → H0

is symmetric if and only if A = A†.

Proof. Suppose that A = A†. Let u ∈ H∞, v ∈ Hr. Then

⟨Au, v⟩H0 = ⟨Au, v⟩(H∞,H−∞)

= ⟨u,A†v⟩(H∞,H−∞)

= ⟨u,Av⟩H0 .
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By density of H∞ ⊆ Hr, the above equality holds for u ∈ Hr as well, and hence A : Hr ⊆

H0 → H0 is symmetric.

On the other hand, if A : Hr ⊆ H0 → H0 is symmetric, then for u, v ∈ H∞,

⟨u,A†v⟩(H∞,H−∞) = ⟨Au, v⟩H0

= ⟨u,Av⟩H0

= ⟨u,Av⟩(H∞,H−∞),

showing that A†v = Av ∈ H∞ which implies that A = A† ∈ opr(Θ).

2.1.3 Elliptic operators

To prepare the way for a functional calculus on this Hilbert scale, we will define a notion

of ellipticity called Θ-ellipticity in this subsection. We then show that for A ∈ opr(Θ),

r ≥ 0, Θ-elliptic and symmetric we have that A as an operator on H is self-adjoint with

domain Hr. Furthermore, if A is invertible in an appropriate sense, then A−1 ∈ op−r(Θ).

Definition 2.1.7. We say that an operator A ∈ opr(Θ) is Θ-elliptic if there exists a

parametrix for A of order −r, that is, there exists an operator P ∈ op−r(Θ) such that

AP = 1H∞ +R1;

PA = 1H∞ +R2,

where R1,R2 ∈ op−∞(Θ) =
⋂
s∈R ops(Θ).

We emphasise that the notion of Θ-ellipticity depends on Θ and on the order r ∈ R.

Remark 2.1.8. In the definition of Θ-ellipticity above, we could have equivalently required

the formally weaker condition of A having a right-parametrix P1 ∈ op−r(Θ) and a left-

parametrix P2 ∈ op−r(Θ),

AP1 = 1H∞ +R1;

P2A = 1H∞ +R2,
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where R1,R2 ∈ op−∞(Θ). Namely, it is not difficult to deduce that this would imply

P1 − P2 ∈ op−∞(Θ).

We will now provide a lemma which lets us formally weaken the condition of Θ-ellipticity

in Definition 2.1.7.

For a pseudodifferential operator T ∈ op(Θ), we say that there exists an asymptotic

expansion

T ∼
∞∑
k=0

Tk,

if

T −
N∑
k=0

Tk ∈ opmN (Θ), mN ↓ −∞.

Lemma 2.1.9 (Borel lemma). Let {Ak}∞
k=0 be a sequence of linear operators from H∞

to H∞ for which Ak ∈ opmk(Θ) such that mk ↓ −∞ as k → ∞. There exists a linear

operator A ∈ opm0(Θ) such that

A ∼
∞∑
k=0

Ak.

Proof. Let η ∈ C∞
c (R) be equal to 1 in a neighbourhood of zero, and let {εk}∞

k=0 be

a sequence of positive numbers tending to zero in a manner to be determined shortly.

Formally we define

A :=
∞∑
k=0

Ak(1 − η(εkΘ)).

We will prove that {εk}∞
k=0 can be chosen such that this series makes sense and A ∈

opm0(Θ) with the desired asymptotic expansion.

Let ξ ∈ H∞. Then for every k ≥ 0 and n ∈ Z, we have

∥Ak(1 − η(εkΘ))ξ∥Hn ≤ ∥Ak∥Hn+mk →Hn∥(1 − η(εkΘ))ξ∥Hn+mk

≤ ∥Ak∥Hn+mk →Hn∥1 − η(εkΘ)∥Hn+m0 →Hn+mk ∥ξ∥Hn+m0 .

Let a > 0 be a number such that a < Θ. The norm of 1 − η(εkΘ) from Hn+m0 to Hn+mk

is determined by functional calculus as

sup
t>a

tmk−m0(1 − η(εkt)) ≤ εm0−mk
k sup

s>0
smk−m0(1 − η(s)) ≤ Cηεk.
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for some constant Cη, and for k sufficiently large so that m0 −mk ≥ 1. Now we choose εk
sufficiently small such that

0 ≤ εkCη max
|n|≤k

{∥Ak∥Hn+mk →Hn} < 2−k.

With this choice of sequence {εk}∞
k=0, we have just proved that the series

Aξ =
∞∑
k=0

Ak(1 − η(εkΘ))ξ

converges in every Hn, and defines a bounded linear operator

A : Hn+m0 → Hn, n ∈ Z.

Since this holds for every n ∈ Z, it follows that A : H∞ → H∞ and by interpolation

(Proposition 2.1.2) A ∈ opm0(Θ). Note that with this fixed choice of {εk}∞
k=0, we have

proved the stronger result that the ‘tail’ of A
∞∑

k=N+1
Ak(1 − η(εkΘ))

converges in every Hs and defines a linear operator in opmN+1(Θ).

Now we prove that A has the desired asymptotic expansion. For every N > 0 we have

A−
N∑
k=0

Ak = −
N∑
k=0

Akη(εkΘ) +
∞∑

k=N+1
Ak(1 − η(εkΘ))

Since η is compactly supported, it is easy to see that the first summand has order −∞

for every N ≥ 0, and the second summand has order at most mN+1 due to the result just

proved.

Corollary 2.1.10. Suppose that A ∈ opr(Θ) has an inverse B ∈ op−r(Θ) up to order

−1. That is,

AB = 1H∞ +R1;

BA = 1H∞ +R2

where R1,R2 have order −1. Then A is Θ-elliptic.
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Proof. Since Rj1 has order at most −j, we can use the Borel lemma to construct an operator

B′ such that

B′ ∼
∞∑
k=0

(−1)jBRj1.

Then AB′ − 1 has order −∞. Similarly we can construct a left inverse.

The condition for Θ-ellipticity in Corollary 2.1.10 corresponds to a definition of ellipticity

by Guillemin in an abstract pseudodifferential calculus [Gui85].

Proposition 2.1.11. Let A ∈ opr(Θ) be Θ-elliptic. If the bounded extension

A : Hs0+r → Hs0

admits a bounded inverse

A−1 : Hs0 → Hs0+r,

for a specific s0 ∈ R, then A−1
∣∣∣
H∞

∈ op−r(Θ). Simply writing A−1 = A−1
∣∣∣
H∞

, we have

that

A−1A = AA−1 = 1H∞ .

Proof. Let P be a parametrix of A and take x ∈ H∞, so that

A−1x = (PA−R2)A
−1(AP −R1)x

= PAPx−R2Px− PR1x+R2A
−1R1x.

Observe that for y ∈ Ht, t ∈ R, we have A−1R1y ∈ Hs0+r, so that R2A
−1R1y ∈ H∞.

Hence,

R2A
−1R1 ∈ op−∞(Θ),

and therefore

A−1 = PAP −R2P − PR1 +R2A
−1R1

∈ op−r(Θ) + op−∞(Θ) = op−r(Θ).

48



2.1.3 Elliptic operators

Proposition 2.1.12. Let A ∈ opr(Θ) be Θ-elliptic of order r ≥ 0. Then the unbounded

operator

A : Hs+r ⊆ Hs → Hs

is closed for each s ∈ R.

Proof. Define the graph norm of A on dom(A) = Hs+r as

∥x∥G(A) := ∥Ax∥s + ∥x∥s, x ∈ Hs+r.

By definition, A is a closed operator if and only if dom(A) is complete with respect to this

graph norm. We will show that for Θ-elliptic operators, the graph norm is equivalent to

∥ · ∥s+r, which immediately implies that Hs+r is complete with respect to the graph norm.

First, we have that

∥Ax∥s + ∥x∥s ≤ ∥A∥Hs+r→Hs∥x∥s+r + ∥Θ−r∥Hs→Hs∥Θrx∥s

≲ ∥x∥s+r.

Next, let P be a parametrix for A, and take x ∈ H∞ so that

∥x∥s+r ≤ ∥PAx∥s+r + ∥R2x∥s+r

≤ ∥P∥Hs→Hs+r ∥Ax∥s + ∥R2∥Hs→Hs+r ∥x∥s

≲ ∥Ax∥s + ∥x∥s.

The assertion of the proposition is now immediate.

Elliptic operators have a property which is often called elliptic regularity, or maximal

subellipticity.

Proposition 2.1.13. Let A ∈ opr(Θ) be a Θ-elliptic operator. If x ∈ H−∞ is such that

Ax ∈ Hs for an s ∈ R, then x ∈ Hs+r.

Proof. Take x ∈ H−∞, and suppose that Ax ∈ Hs. Then PAx ∈ Hs+r, which implies

that

x = PAx−R2x ∈ Hs+r.
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Finally we will now show that if A ∈ opr(Θ), r ≥ 0 is Θ-elliptic and symmetric, then A is

self-adjoint with domain Hr. Recall from Section 2.1.2 that A†|H∞ ∈ opr(Θ), and for any

s ∈ R, we have that

⟨Au, v⟩(Hs,H−s) = ⟨u,A†v⟩(Hs+r,H−s−r), u ∈ Hs+r, v ∈ H−s. (2.2)

And, by Proposition 2.1.6, for r ≥ 0 we have that A = A† if and only if Ar,0 : Hr ⊆ H → H

is symmetric.

Proposition 2.1.14. Let A ∈ opr(Θ), r ≥ 0, be a Θ-elliptic and symmetric operator.

Then A is self-adjoint with domain Hr.

Proof. To prove that A is self-adjoint, we need to show that the Hermitian adjoint of the

closed operator A : Hr ⊆ H0 → H0, writing A∗0 :=
(
A
r,0)∗

,

A∗0 : dom(A∗0) ⊆ H0 → H0,

has domain dom(A∗0) = Hr. Recall that, by definition,

dom(A∗0) := {u ∈ H0 : ∃v ∈ H0 such that ∀ϕ ∈ Hr ⟨u,Aϕ⟩H0 = ⟨v,ϕ⟩H0}.

If u, v ∈ H0 and ϕ ∈ Hr, then by (2.2) and Proposition 2.1.6,

⟨u,Aϕ⟩H0 = ⟨A†u,ϕ⟩(H−r,Hr)

= ⟨Au,ϕ⟩(H−r,Hr);

⟨v,ϕ⟩H0 = ⟨v,ϕ⟩(H−r,Hr).

Since Hr separates the points of H−r, we have that for u, v ∈ H0,

⟨Au,ϕ⟩(H−r,Hr) = ⟨v,ϕ⟩(H−r,Hr), ∀ϕ ∈ Hr,

if and only if

Au = v ∈ H−r.

Hence,

dom(A∗0) = {u ∈ H0 : ∃v ∈ H0 such that Au = v}

= {u ∈ H0 : Au ∈ H0}.
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By elliptic regularity (Proposition 2.1.13) it follows that dom(A∗0) = Hr, completing the

proof.

2.2 Functional calculus for elliptic operators

Due to the results in the previous section, we know that for a Θ-elliptic symmetric operator

A ∈ opr(Θ), r ≥ 0, the operator Ar,0 : Hr ⊆ H → H is self-adjoint. Hence, we can ask

when the operator f(Ar,0) defined via the Borel functional calculus is an operator in op(Θ).

An obstacle for a naive approach is that f(As+r,s) is not easily defined for s ̸= 0 as an

operator on Hs, as As+r,s is generally not normal or symmetric as an operator on Hs when

A
r,0 is on H. Indeed, Proposition 2.1.5 tells us that this is only the case when

A = Θ−2sAΘ2s.

The main idea in this section is the following. A functional calculus for the self-adjoint Θ

itself as a pseudodifferential operator is not difficult to construct. Namely, for measurable

f : R → C, one can define f(Θ) as an unbounded operator on H [Sch12, Theorem 5.9],

with operator norms

∥f(Θ)∥Hs+m→Hs = ∥Θsf(Θ)Θ−s−m∥H→H = ∥f(x)x−m∥L∞(E),

which gives a quick and appropriate condition for f(Θ) ∈ opm(Θ) (here, E is the spectral

measure of Θ, see Definition 2.2.2 below for a precise definition of L∞(E)). We can further

exploit this by the insight that for a Θ-elliptic symmetric operator A ∈ opr(Θ), r > 0,

in fact the norms ∥Θsξ∥ and ∥⟨A⟩
s
r ξ∥ are equivalent, where ⟨x⟩ := (1 + |x|2)

1
2 . If we can

provide that

Hs(Θ) = Hs(⟨A⟩
1
r ), ops(Θ) = ops(⟨A⟩

1
r ),

we can then obtain a functional calculus for A on the Sobolev spaces Hs(⟨A⟩
1
r ) as easily

as for Θ above, which lets us conclude that f(A) ∈ op(Θ).

Proposition 2.2.1. Let A ∈ opr(Θ), r > 0 be Θ-elliptic and symmetric. Then ⟨A⟩
1
r :=

(1 +A2)
1

2r extends to an invertible positive self-adjoint operator on H, and

dom Θs = dom
(
⟨A⟩

1
r

)s
.

51



CHAPTER 2. FUNCTIONAL CALCULUS FOR ABSTRACT
PSEUDODIFFERENTIAL OPERATORS

The norms ∥Θsξ∥H and ∥⟨A⟩
s
r ξ∥H are equivalent on this subspace of H. Therefore, Θ and

⟨A⟩
1
r define the same Sobolev scale

Hs(Θ) = Hs
(
⟨A⟩

1
r

)
,

and we have

opt(Θ) = opt
(
⟨A⟩

1
r

)
.

Proof. The first statement follows from Proposition 2.1.14. For the remaining statements,

it suffices to prove that

(1 +A2)αΘ−2αr

extends to a bounded operator on H for all α ∈ R, as this would imply for ξ ∈ H∞,

∥⟨A⟩
s
r ξ∥H ≤ ∥⟨A⟩

s
r Θ−s∥∞∥Θsξ∥H ≲ ∥Θsξ∥H,

and an analogous estimate in the other direction.

Let P be a parametrix for A, so that AP = 1 +R with R ∈ op−∞(Θ). Since

(1 +A2)P 2 = P 2 +A(1 +R)P = 1 + P 2 +R+ARP

and P 2 +R+ARP ∈ op−2r(Θ) and similarly for (1+A2)P 2, it follows that the operator

1 + A2 is also Θ-elliptic due to Corollary 2.1.10. Since A is self-adjoint with domain

Hr, applying Proposition 2.1.11 gives that (1 + A2)−1 ∈ op−2r(Θ). We therefore have

(1+A2)k ∈ op2kr(Θ), k ∈ Z. This in turn gives that H∞ ⊆ dom(1+A2)z for any z ∈ C.

We use the Hadamard three-line theorem, so define the function

F (z) := ⟨x, (1 +A2)mzΘ−2mzry⟩H, z ∈ C,

where m ∈ Z and x, y ∈ H∞ are fixed. Let {en}n∈N ⊆ H∞ be an orthonormal basis of

H, then

F (z) =
∞∑
n=0

⟨x, (1 +A2)mzen⟩H⟨en, Θ−2mzry⟩H. (2.3)
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Using the dominated convergence theorem, it can be seen that z 7→ ⟨x, (1 + A2)mzen⟩H

and z 7→ ⟨en, Θ−2mzry⟩H are continuous maps. Applying the Cauchy–Schwarz inequality

to the series (2.3) yields
∞∑
n=0

|⟨x, (1 +A2)mzen⟩H||⟨en, Θ−2mzry⟩H| ≤ ∥(1 +A2)mzx∥H∥Θ−2mzry∥H,

which is uniformly bounded on compact subsets of C due to the continuity of the right-

hand side. We can therefore apply the dominated convergence theorem again to deduce

that F (z) is a continuous function itself. Furthermore, this uniform boundedness yields

through Fubini’s theorem that if γ is a closed loop in C then∫
γ
F (z) dz =

∞∑
n=0

∫
γ
⟨x, (1 +A2)mzen⟩H⟨en, Θ−2mzry⟩H dz.

Using Fubini’s theorem once more, we have that∫
γ
F (z) dz =

∞∑
n=0

∫
σ(Θ−2r)

∫
σ(1+A2)

∫
γ
(λµ)mz dz⟨x, dE1+A2

en⟩H⟨en, dEΘ−2r
y⟩H = 0,

so that we can conclude by Morera’s theorem that F (z) is holomorphic.

Since 1 +A2 and Θ are positive operators and

sup
x>0

|xit| = 1,

it follows from the Borel functional calculus that for s ∈ R,

|F (is)| = |⟨(1 +A2)−imsx, Θ−2imsry⟩H|

≤ ∥x∥H∥y∥H.

Likewise,

|F (1 + is)| = |⟨(1 +A2)−imsx, (1 +A2)mΘ−2mrΘ−2imsry⟩H|

≤ ∥(1 +A2)mΘ−2mr∥H→H∥x∥H∥y∥H,

which we know to be finite since m is an integer.
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The Hadamard three-line theorem (see e.g. [BL76, Lemma 1.1.2]) now gives that for

α ∈ (0, 1),

|F (α)| ≤ max
s∈R

|F (α+ is)|

≤
(

max
s∈R

|F (is)|
)(1−α)(

max
s∈R

|F (1 + is)|
)α

≤ ∥(1 +A2)mΘ−2mr∥αH→H∥x∥H∥y∥H.

Hence, with α ∈ (0, 1) and m ∈ Z,

∥(1 +A2)mαΘ−2mαr∥H→H ≤ ∥(1 +A2)mΘ−2mr∥αH→H,

which proves that (1+A2)mαΘ−2mαr extends to a bounded operator on H for all m ∈ Z,

α ∈ [0, 1].

Definition 2.2.2. Let E be a spectral measure on R with the Borel sigma algebra. For a

Borel measurable function f : R → C we define the essential supremum seminorm

∥f∥L∞(E) := sup{y ∈ R : E(|f |−1((y, ∞))) = 0},

which defines L∞(E) in the usual way, namely as the quotient of the set of measurable

functions with finite seminorm, by the set of those of zero seminorm. In the same way we

define Lβ∞(E) by the seminorm

∥f∥
Lβ

∞(E)
:= ∥x 7→ f(x)⟨x⟩−β∥L∞(E),

for any β ∈ R, where ⟨x⟩ = (1 + |x|2)1/2.

Theorem 2.2.3. Let A ∈ opr(Θ), r > 0, be Θ-elliptic and symmetric, and let E denote

its spectral measure. If f ∈ Lβ∞(E),β ∈ R, then

f(A
r,0
) ∈ opβr(Θ),

and we simply write f(A) := f(A
r,0
). More precisely,

∥f(A)∥Hs+βr→Hs ≤ Cs,A∥f∥
Lβ

∞(E)
.
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Proof. Let A ∈ opr(Θ), r > 0 be Θ-elliptic and symmetric. Using Proposition 2.2.1, we re-

place Θ by ⟨A⟩
1
r so that A ∈ opr(⟨A⟩

1
r ) is Θ-elliptic and symmetric. By Proposition 2.1.14,

the operator

A
r,0 : Hr(⟨A⟩

1
r ) ⊆ H → H

is self-adjoint; we denote its spectral measure by E. Then for f ∈ Lβ∞(E), using Borel

functional calculus to define f(Ar,0), we have

∥⟨A⟩
s
r f(A

r,0
)⟨A⟩− s

r
−β∥H→H = ∥f(Ar,0)⟨A⟩−β∥H→H = ∥f∥

Lβ
∞(E)

< ∞,

which shows that f(Ar,0)|H∞ ∈ opβr(⟨A⟩
1
r ). Converting this estimate back into an esti-

mate on the spaces Hs(Θ) introduces the constant Cs,A.

Theorem 2.2.3 has a converse in the following sense. If A ∈ opr(Θ), r > 0 is an arbitrary

Θ-elliptic symmetric operator and if f : R → C is such that f(A) ∈ opβr(Θ), then the

proof of Proposition 2.2.1 gives that f(A)(1+A2)−β/2 is a bounded operator on H. This

happens if and only if f⟨x⟩−β ∈ L0
∞(E) [Sch12, Theorem 5.9], i.e. f ∈ Lβ∞(E).

Corollary 2.2.4. If A ∈ opr(Θ), r > 0 is symmetric and Θ-elliptic and if f : R → C is

a bounded Borel measurable function, then for any t ∈ R we have

∥f(tA)∥Hs→Hs ≤ Cs,A sup
x∈R

|f(x)|,

independent of t ∈ R.

Proof. Like in the proof Theorem 2.2.3, we have

∥f(tA)∥
Hs(⟨A⟩

1
r )→Hs(⟨A⟩

1
r )

= ∥ft∥L0
∞(E) ≤ sup

x∈R

|f(x)|,

where we wrote ft(x) := f(tx).

We say that two normal (potentially unbounded) operators A,B strongly commute if all

their respective spectral projections commute.

The functional calculus constructed in Theorem 2.2.3 can easily be extended to a larger

class of operators. For example, on Rd we have that i ddx is not (1 − ∆)
1
2 -elliptic, but
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it does commute strongly with a (1 − ∆)
1
2 -elliptic symmetric operator, namely (1 − ∆)

1
2

itself. The following proposition shows that a functional calculus for i ddx does exist in

op(1 − ∆)
1
2 for this reason.

Proposition 2.2.5. Let A be a self-adjoint operator on H with spectral measure E. If

there exists a Θ-elliptic symmetric operator H ∈ oph(Θ), h > 0 such that A strongly

commutes with Hh,0 : Hh ⊆ H → H, then for f ∈ L0
∞(E) we have that f(A) ∈ op0(Θ). If

A ∈ opr(Θ) itself for some r ∈ R, we have that f(A) ∈ opβr(Θ) for f ∈ Lβ∞(E), β ≥ 0.

Proof. In light of Proposition 2.2.1, we can assume without loss of generality that H = Θ.

If f ∈ L0
∞(E), then f(A) : H → H is a bounded operator, and for ξ ∈ H∞ we have

∥f(A)ξ∥Hk = ∥Θkf(A)ξ∥H ≤ ∥f(A)∥∞∥ξ∥Hk , k ∈ Z,

which shows that f(A) ∈ op0(Θ) through interpolation (Proposition 2.1.2). The second

part of the proposition is proved similarly, after the observation that the Hadamard three-

line argument in the proof of Proposition 2.2.1 goes through for A if m ∈ N, i.e.

(1 +A2)αΘ−2αr is bounded for α ≥ 0.

Let us now compare the functional calculus of Theorem 2.2.3 with other examples. For

classical pseudodifferential operators, pseudodifferential operators in the Beals–Fefferman

calculus, and a generalisation thereof on manifolds, general functions in f ∈ Lβ∞(E) are

much too rough to guarantee that f(T ) is again a pseudodifferential operator of the same

class [Str72; Bon13]. To emphasise, our results provide that for such rough functions f , the

operator f(T ) is well-defined and maps boundedly between appropriate Sobolev spaces,

but nothing more. The typical function class that allows concluding that f(T ) is again a

pseudodifferential operator of the right type, is the following [Str72; Bon13].

Definition 2.2.6. For I ⊆ R an interval and β ∈ R, we define Sβ(I) as the class of

smooth functions f : I → C such that

∥f∥Sβ(I),k := sup
x∈I

|f (k)(x)|⟨x⟩k−β < ∞, k ∈ N.

The quantities above are seminorms.
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From this perspective, the operator class OP(Θ) (recall Definition 2.1.3) behaves more

like typical pseudodifferential operators.

Theorem 2.2.7. Let A ∈ OPr(Θ), r > 0, be Θ-elliptic and symmetric, with spectrum

σ(A). If f ∈ Sβ(σ(A)),β ∈ R, then the operator f(A) ∈ opβr(Θ) defined in Theo-

rem 2.2.3, satisfies

f(A) ∈
⋂
ε>0

OPβr+ε(Θ).

To prove this theorem, we need to estimate the appropriate operator norms of the re-

peated commutators δnΘ(f(A)). As mentioned in Section 1.3, this is exactly what multiple

operator integrals are for. The proof of this theorem will hence be provided in Chapter 3,

as a consequence of Theorem 3.4.2.

Remark 2.2.8. It is unknown to the author whether the conclusion of Theorem 2.2.7 can

be strengthened to

f(A) ∈ OPβr(Θ).

2.3 Functional calculus for zero-order operators

In Section 2.2 we proved that Θ-elliptic symmetric operators in opr(Θ) for r > 0 admit a

functional calculus. The approach of that section does not apply for the case r = 0. To

illustrate how different the zero-order case is, consider the situation where Θ = (1 − ∆)
1
2

on L2(M) where M is a compact subset of Rd. We have that for ϕ : M → R, the

multiplication operator

Mϕ : L2(M) → L2(M)

ξ 7→ ϕ · ξ,

where ϕ · ξ(x) = ϕ(x)ξ(x), is in op0(1 − ∆)
1
2 if and only if ϕ is smooth. If f(Mϕ) ∈

op0(1 − ∆)
1
2 for all Mϕ ∈ op0(1 − ∆)

1
2 , then the identity

f(Mϕ) =Mf◦ϕ
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shows that the function f has to be smooth itself and no functional calculus with general

functions in Lβ∞(E) is possible; smoothness is a necessary condition.

For op0(Θ) we therefore use a different strategy altogether. An approach by Davies [Dav95c;

Dav95b] on the construction of a functional calculus using almost analytic extensions di-

rectly applies. The technique was introduced by Hörmander [Hör69; Hör70], and subse-

quently used in various contexts by many authors, though the formula is often called the

Helffer–Sjöstrand formula due to their independent rediscovery in [HS88]. For detailed

notes on the historical origins, see [Hör69]. Using almost analytic extensions to obtain a

functional calculus for pseudodifferential operators has precedent in the works of, amongst

others, Hörmander [Hör69], Dynkin [Dyn70; Dyn72], Helffer–Sjöstrand [HS88], Dimassi–

Sjöstrand [DS99, Chapter 8], and Bony [Bon13]. In an interesting twist, some of the

earliest applications by Helffer and Sjöstrand of this formula occured in the study of the

Schrödinger operator and its density of states [HS88; HS89; Sjö91], the main subject of

Chapters 5 and 6 in this thesis (but in which these extensions make no appearance). For

the details of this construction we follow Davies [Dav95b][Dav95c, Section 2.2].

Definition 2.3.1 ([Dav95b]). Let f ∈ C∞
c (R). Recall that ⟨x⟩ := (1 + |x|2)

1
2 . We define

an extension f̃ : C → C by

f̃(x+ iy) := τ (y/⟨x⟩)
N∑
k=0

f (k)(x)
(iy)k

k!
,

where N ≥ 1 and τ : R → R is a smooth bump function with τ (s) = 0 for |s| > 2,

τ (s) = 1 for |s| < 1. Then we have

f(x) = − 1
π

∫
C

(
∂f̃

∂z
(z)

)
(z − x)−1 dz, x ∈ R,

independent of the choice of τ and N . We refer to f̃ as an almost analytic extension of f .

Definition 2.3.2. We define T β(I) as the space of smooth functions f : I → C such that

∥f∥Tβ(I),k :=
∫
I

|f (k)(x)|⟨x⟩k−β−1 dx < ∞, k ∈ N.

Recall that we previously put

∥f∥Sβ(I),k = sup
x∈I

|f (k)(x)|⟨x⟩k−β < ∞, k ∈ N.

58



2.3. FUNCTIONAL CALCULUS FOR ZERO-ORDER OPERATORS

Hence, in case I = R, we note the inclusions

⋃
α<β

Sα(R) ⊊ T β(R) ⊊ Sβ(R) ⊊ Lβ∞(E), β ∈ R,

for any spectral measure E.

Theorem 2.3.3 ([Dav95b]). Let f ∈ C∞
c (R) with almost analytic extension f̃ as in

Definition 2.3.1, so that

f(x) = − 1
π

∫
C

(
∂f̃

∂z
(z)

)
(z − x)−1 dz, x ∈ R.

For any closed, densely defined operator H with σ(H) ⊆ R, if for some α ∈ R≥0 we have

the estimate

∥(z −H)−1∥∞ ≤ C
1

|ℑ(z)|

( ⟨z⟩
|ℑ(z)|

)α
, z ∈ C ⊆ R,

then we have that

f(H) := − 1
π

∫
C

∂f̃

∂z
(z −H)−1 dz

defines a bounded operator on H independent of the choice of N > α and τ in the con-

struction of the extension f̃ , with

∥f(H)∥∞ ≤
N+1∑
k=0

∥f∥T 0(R),k.

The integral should be interpreted as a B(H)-valued Bochner integral. In case H is self-

adjoint, this agrees with the continuous functional calculus.

We thank Dmitriy Zanin for providing a key step in the following proof, which is an

adaptation of an argument by Beals [Bea77, Lemma 3.1].

Proposition 2.3.4. Let X ∈ opr(Θ) be such that [Θ,X ] ∈ opr(Θ). If the extension

X : Hs0+r → Hs0

has a bounded inverse

X−1 : Hs0 → Hs0+r
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for one particular s0 ∈ R, then X−1
∣∣∣
H∞

∈ op−r(Θ). We have XX−1|H∞ = X−1X|H∞ =

1H∞. In particular, if X ∈ opr(Θ) and [Θ,X ] ∈ opr(Θ) with r ≥ 0, then we have as

(unbounded) operators

σ(X : Hs0+r ⊆ Hs0 → Hs0) = σ(X : Hs+r ⊆ Hs → Hs)

for all s ∈ R, where σ denotes the spectrum of the operator.

Proof. Since opr(Θ) = op0(Θ) · Θr, it suffices to prove the proposition for r = 0.

Suppose that X ∈ op0(Θ) is a bijection on Hs0 → Hs0 and write X−1 : Hs0 → Hs0 .

Then X restricts to a necessarily injective map Hs0+1 → Hs0+1. We now prove that

X : Hs0+1 → Hs0+1 is also surjective.

We follow [Bea77, Lemma 3.1], filling in some omitted details. Take v ∈ Hs0+1, then there

exists u ∈ Hs0 with Xu = v. Let ε > 0, then Θ
1+εΘ ∈ op0(Θ), and

Θ
1 + εΘ

u =
Θ

1 + εΘ
X−1v

= X−1 Θ
1 + εΘ

v+X−1
[

Θ
1 + εΘ

,X
]
X−1v.

Now, the Hs0 norm of the right-hand side is bounded independent of ε:∥∥∥∥ Θ
1 + εΘ

∥∥∥∥
Hs0+1→Hs0

≤ ∥Θ∥Hs0+1→Hs0 ;∥∥∥∥[ Θ
1 + εΘ

,X
]∥∥∥∥

Hs0 →Hs0
= ∥(1 + εΘ)−1[Θ,X ](1 + εΘ)−1∥Hs0 →Hs0 ≤ ∥[Θ,X ]∥Hs0 →Hs0 .

This implies that u ∈ Hs0+1, a fact that can be quickly verified with the spectral theorem

and Fatou’s lemma. Therefore,

X : Hs0+1 → Hs0+1

is a bijection. By induction and interpolation (Proposition 2.1.2), the same assertion holds

for each Hs, s ≥ s0.

Finally, it is a basic fact that the adjoint of a bijective operator is bijective, i.e.

X ′s0 = X†|H−s0 : H−s0 → H−s0
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is a bijection (recall the notation from Section 2.1.2). Since

[Θ,X†] = −[Θ,X ]† ∈ op0(Θ),

we can apply the same arguments as above to deduce that

X† : H−s → H−s

is a bijection for all −s ≥ −s0. This implies that

X = X†† : Hs → Hs

is a bijection for all s ≤ s0.

As an aside, one may wonder how for r > 0 the condition A, [Θ,A] ∈ opr(Θ) compares to

the condition of A being Θ-elliptic used in the previous section. The following consequence

of Proposition 2.3.4 shows that, under the assumption that A is self-adjoint with domain

Hr, Θ-ellipticity is a weaker condition.

Corollary 2.3.5. Let A ∈ opr(Θ), r > 0, be such that

A : Hr ⊆ H0 → H0

has a non-empty resolvent set (for example if A is self-adjoint with domain Hr), and

suppose that [Θ,A] ∈ opr(Θ) as well. Then A is Θ-elliptic.

Proof. By assumption, there exists z ∈ C such that

z −A : Hr ⊆ H0 → H0

is invertible, and because [Θ,A] ∈ opr(Θ) it follows that (z−A)−1 ∈ op−r(Θ) by Propo-

sition 2.3.4. Now,

A(z −A)−1 = −1 + z(z −A)−1.

In other words, −(z −A)−1 is an inverse of A modulo op−r(Θ). Corollary 2.1.10 gives

that A is Θ-elliptic.
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This following type of estimate on the resolvent also appears in Lp-boundedness problems,

see [Dav95a; Dav95b; JN94].

Lemma 2.3.6. Let A ∈ op0(Θ) be such that [Θ,A] ∈ op0(Θ) and A
0,0 : H → H is

self-adjoint. Then for all s ∈ R, there is a constant Cs > 0 such that

∥(z −A)−1∥Hs→Hs ≤ Cs
1

|ℑ(z)|

( ⟨z⟩
|ℑ(z)|

)2|s|−1
, z ∈ C \ R.

Proof. The proof is by induction and interpolation (Proposition 2.1.2). For s = 0, the

estimate holds by self-adjointness of A0,0. Note that (z −A)−1 ∈ op0(Θ) due to Proposi-

tion 2.3.4.

Suppose the inequality is proved for a fixed s ∈ R≥0. Then for z ∈ C \ R,

∥(z −A)−1∥Hs+1→Hs+1

= ∥Θ(z −A)−1Θ−1∥Hs→Hs

≤ ∥(z −A)−1∥Hs→Hs + ∥(z −A)−1[Θ,A](z −A)−1Θ−1∥Hs→Hs

≤ ∥(z −A)−1∥Hs→Hs

(
1 + ∥[Θ,A](i+A)−1∥Hs→Hs∥(i+A)(z −A)−1∥Hs→Hs∥Θ−1∥Hs→Hs

)
.

Note that (i+A)−1 ∈ op0(Θ) by Proposition 2.3.4, so that for some constant Bs > 0,

∥[Θ,A](i+A)−1∥Hs→Hs∥Θ−1∥Hs→Hs ≤ Bs.

Using the resolvent identity, we have

(i+A)(z −A)−1 = (i+ z)(z −A)−1 − 1

and therefore

∥(i+A)(z −A)−1∥Hs→Hs ≤ 1 + |z + i|∥(z −A)−1∥Hs→Hs .

This yields

∥(z −A)−1∥Hs+1→Hs+1 ≤ ∥(z −A)−1∥Hs→Hs(1 +Bs)

+ |z + i|Bs∥(z −A)−1∥2
Hs→Hs

≤ (1 +Bs)∥(z −A)−1∥Hs→Hs · (1 + |z + i|∥(z −A)−1∥Hs→Hs).
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This estimate also holds with |z− i| on the right-hand side, and min(|z+ i|, |z− i|) ≤ ⟨z⟩,

so that

∥(z −A)−1∥Hs+1→Hs+1 ≤ (1 +Bs)∥(z −A)−1∥Hs→Hs · (1 + ⟨z⟩∥(z −A)−1∥Hs→Hs),

from which the claimed estimate follows. Induction and interpolation now provide the

estimate for all s ≥ 0.

The case s ≤ 0 is proved in the same manner, using induction in the negative direction.

Namely, the norm

∥(z −A)−1∥Hs−1→Hs−1 = ∥Θ−1(z −A)−1Θ∥Hs→Hs

can be estimated as before.

We now arrive at the main result of this section, a functional calculus for op0(Θ).

Theorem 2.3.7. Let A ∈ op0(Θ) be such that [Θ,A] ∈ op0(Θ) and A
0,0 : H → H is

self-adjoint. For f ∈ C∞(R),

f(A) ∈ op0(Θ).

Specifically, we have the estimate

∥f(A)∥Hs→Hs ≤
⌈2|s|⌉+1∑
k=0

∥f∥T 0(R),k.

Proof. Without loss of generality, we assume that f ∈ C∞
c (R). As A ∈ op0(Θ), it extends

to a bounded operator

A
s,s : Hs → Hs, s ∈ R.

Furthermore, by Proposition 2.1.11, we have

(z −A)−1 ∈ op0(Θ), z ∈ C \ R.

Theorem 2.3.3 and Lemma 2.3.6 combined give that

f(A
s,s
) : Hs → Hs, s ∈ R,
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is a bounded operator with the norm bound as claimed. By construction, for ξ ∈ H∞ we

have that

f(A
s,s
)ξ =

∫
C

∂f̃

∂z
(z −A

s,s
)−1ξ dz ∈ Hs,

as an Hs-valued Bochner integral. It is clear that

(z −A
s,s
)−1

∣∣∣
H∞

= (z −A)−1,

and therefore these arguments show that for ξ ∈ H∞ the integral∫
C

∂f̃

∂z
(z −A)−1ξ dz

can be evaluated as a Bochner integral in each Sobolev space Hs. Hence

ξ 7→
∫

C

∂f̃

∂z
(z −A)−1ξ dz

forms a bounded linear map on H∞; denote this operator by f(A) : H∞ → H∞. Then

since f(A) agrees with f(A
s,s
) on H∞, we must have

f(A)
s,s

= f(A
s,s
),

and thus we have f(A) ∈ op0(Θ).

Similarly to the Θ-elliptic case, we also provide a theorem for OP0(Θ) (recall Defini-

tion 2.1.3) for which the proof will follow in Chapter 3 using a multiple operator integral

technique. Specifically, it is a consequence of Theorem 3.4.2.

Theorem 2.3.8. Let A ∈ OP0(Θ) be such that A0,0 : H → H is self-adjoint. For

f ∈ C∞(R),

f(A) ∈ OP0(Θ).

Theorem 2.3.7 and Theorem 2.3.8 are consistent with [Bon13, Theorem 3], which provides

a functional calculus for zero-order pseudodifferential operators on manifolds for f ∈

C∞(R). Since our pseudodifferential calculus is vastly more general, our results are both

more general and less specific than that in [Bon13].
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Chapter 3

Multiple operator integrals as

abstract pseudodifferential

operators

Thanks again, and work even harder!!!

Fedor Sukochev

Like Chapter 2, the content and exposition in this chapter has appeared previously as

part of the preprint [HMN24], joint work with Edward McDonald and Teun van Nuland.

For this chapter, we are indebted to discussions with Fedor Sukochev and Dmitriy Zanin.

The main result of this chapter, Theorem 3.2.5, is a construction of multiple operator

integrals adapted to the abstract pseudodifferential calculus of Connes and Moscovici.

The other main results of this chapter are a more specific version of this MOI construction

in Theorem 3.3.3, a noncommutative Taylor expansion in Theorem 3.5.5, and a result on

the existence of asymptotic trace expansions in spectral triples in Corollary 3.6.6.

Due to the results in Chapter 2, we have a functional calculus for abstract pseudod-

ifferential operators A ∈ op(Θ). As explained in Section 1.3, it would be incredibly
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useful in the field of noncommutative geometry if we can define multiple operator inte-

grals (MOIs) for this abstract pseudodifferential calculus. There are two closely related

constructions we could employ here: Peller’s approach [Pel06; Pel16] and Azamov–Carey–

Dodds–Sukochev’s [ACDS09]. The former works with a very general class of symbol

functions, constructing MOIs for operators on Hilbert spaces. The latter considers a more

restricted class of functions and achieves stronger results as a consequence (Fréchet ver-

sus Gateaux differentiability), and notably achieves this in the more general setting of

semi-finite von Neumann algebras. Since we wish to keep our symbol functions as general

as possible and the results in Peller’s work suffice for our purposes, we will use Peller’s

approach as a blueprint to construct MOIs of pseudodifferential operators.

In Section 3.5 we will provide asymptotic expansions for these MOIs including a non-

commutative Taylor expansion, which we will apply in Section 3.6 to noncommutative

geometry, answering a previously open question on the existence of asymptotic expansions

of heat traces in spectral triples.

Throughout this chapter, we fix a positive invertible operator Θ on the separable Hilbert

space H, which yields a scale of separable Hilbert spaces {Hs}s∈R by Definition 2.1.1.

3.1 Operator integrals

We start with standard definitions and results on measurability and integrability of oper-

ator valued functions.

Definition 3.1.1. Let H0, H1 be separable Hilbert spaces and let (Ω, Σ, ν) be a measure

space with complex measure. A function f : Ω → B(H1, H0) is called weak operator

topology measurable (weakly measurable for short) if for all η ∈ H0, ξ ∈ H1 the complex-

valued function

ω 7→ ⟨η, f(ω)ξ⟩H0 , ω ∈ Ω,

is measurable. Similarly, f is said to be weak operator topology integrable if for all ξ and

η the above map is integrable.
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Lemma 3.1.2. [LMSZ23, Lemma 1.4.2] Let H0, H1, (Ω, Σ, ν) be as above, and let f :

Ω → B(H1, H0) be weakly measurable. Then the norm function

ω 7→ ∥f(ω)∥H1→H0 , ω ∈ Ω,

is measurable. If moreover ∫
Ω

∥f(ω)∥H1→H0 d|ν|(ω) < ∞,

then there exists a unique If ∈ B(H1, H0) such that

⟨η, Ifξ⟩H0 =
∫

Ω
⟨η, f(ω)ξ⟩H0 dν(ω), η ∈ H0, ξ ∈ H1,

and

∥If∥H1→H0 ≤
∫

Ω
∥f(ω)∥H1→H0 d|ν|(ω).

We then write If =
∫

Ω f(ω) dν(ω).

Proposition 3.1.3. [DDSZ20, Lemma 3.11] Let (Ω, Σ, ν) be a σ-finite measure space,

let a : R × Ω → C be measurable and bounded, and let H be an (unbounded) self-adjoint

operator on H. Then

ω 7→ a(H,ω)

is weakly measurable.

Proof. Though [DDSZ20, Lemma 3.11] is only formulated for bounded H, the unbounded

case follows with the same proof.

Lemma 3.1.4. Let H0, . . . , H2n+1 be separable Hilbert spaces, Xi ∈ B(H2i, H2i−1), and

let fi : Ω → B(H2i+1, H2i) be weakly measurable functions. Then

Ω → B(H2n+1, H0)

ω 7→ f0(ω)X1f1(ω) · · ·Xnfn(ω)

is weakly measurable. Furthermore, if∫
Ω

∥f0(ω)∥H1→H0 · · · ∥fn(ω)∥H2n+1→H2n d|ν|(ω) < ∞,
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the map

B(H1, H0) × · · · ×B(H2n−1, H2n−2) → B(H2n, H0)

(X1, . . . ,Xn) 7→
∫

Ω
f0(ω)X1f1(ω) · · ·Xnfn(ω) dν(ω),

whose existence follows from Lemma 3.1.2, is so-continuous when restricted to the unit

ball in each argument B(H2i, H2i−1).

Proof. The first part of the lemma is a consequence of the fact that the pointwise product

of weakly measurable functions is weakly measurable, see [DDSZ20, Lemma 3.7].

The so-continuity follows from the joint continuity of the multiplication

(X1, . . . ,Xn) 7→ a0(H0,ω)X1a1(H1,ω) · · ·Xnan(Hn,ω)

in the strong operator topology when restricting to the unit balls [Bla06, Section I.3.2],

in combination with the Dominated Convergence Theorem for the Bochner integral of

Hilbert space-valued functions [DS88, Corollary III.6.16].

Recall the definition of Lβ∞(E) in Definition 2.2.2, and that we use the notation ∥ · ∥∞ for

the essential supremum.

Lemma 3.1.5. Let (Ω, Σ, ν) be a σ-finite measure space, let a : R × Ω → C be measurable

and bounded, and let E be a spectral measure on H. Then the functions

ω 7→ ∥a(·,ω)∥∞, ω 7→ ∥a(·,ω)∥L0
∞(E)

are measurable.

Proof. Both claims can be proved with the Fubini–Tonelli Theorem or by combining

Lemma 3.1.2 and Proposition 3.1.3. It is vital that ∥ · ∥∞ is the essential supremum,

and that E is a spectral measure on a separable Hilbert space as pointed out in [Nik23,

Remark 4.1.3].
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3.2 Multiple operator integrals as abstract pseudodifferen-

tial operators

In this section we construct multiple operator integrals following Peller [Pel06; Pel16]. His

MOIs are constructed with symbols ϕ in integral projective tensor products

L∞(E0)⊗̂i · · · ⊗̂iL∞(En) for spectral measures E0, . . . ,En. A precise study of this integral

tensor product can be found in [Nik23]. We first generalise this integral tensor product.

Definition 3.2.1. Let Γ0, . . . , Γn be function spaces of bounded measurable functions R →

R equipped with (semi)norms ∥ · ∥Γi,k, k ∈ N. We define Γ0 ⊠i · · · ⊠i Γn as the set of

functions ϕ : Rn+1 → C for which there exists a decomposition

ϕ(λ0, . . . ,λn) =
∫

Ω
a0(λ0,ω) · · · an(λn,ω) dν(ω) (3.1)

where (Ω, ν) is a σ-finite measure space, ai : R × Ω → C is measurable, ai(·,ω) ∈ Γi, the

functions ω 7→ ∥ai(·,ω)∥Γi,k are measurable for each i and k, and∫
Ω

∥a0(·,ω)∥Γ0,k0 · · · ∥an(·,ω)∥Γn,kn d|ν|(ω) < ∞. (3.2)

We define the seminorm

∥ϕ∥Γ0⊠i···⊠iΓn,k0,...,kn , k0, . . . , kn ∈ N

to be the infimum of the quantity (3.2) over all representations (3.1).

Remark 3.2.2. We have that

Γ0 ⊗ · · · ⊗ Γn ⊆ Γ0 ⊠i · · ·⊠i Γn,

where ⊗ denotes the algebraic tensor product for topological vector spaces. We refrain from

answering the question whether the space in Definition 3.2.1 is in general the completion

of the algebraic tensor product under the given seminorms.

Note that due to Lemma 3.1.5, if a : R × Ω → C is measurable and a(·,ω) ∈ Sβ(R),

we have that ω 7→ ∥a(·,ω)∥Sβ(R),k is measurable, and the same claim holds for T β(R)
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and Lβ∞(E) (recall the definitions of the spaces Sβ(R), T β(R) and Lβ∞(E) respectively in

Definition 2.2.6, Definition 2.3.2 and Definition 2.2.2). Hence the construction in Defini-

tion 3.2.1 can be applied for these spaces without this extra assumption.

For Lβ∞(E) with E a spectral measure, this gives the integral projective tensor product

Lβ0
∞(E0)⊠i · · ·⊠i L

βn
∞ (En) = Lβ0

∞(E0)⊗̂i · · · ⊗̂iL
βn
∞ (En),

which appears in particular for β0 = · · · = βn = 0 in the works by Peller [Pel06, pp.6, 7].

Remark 3.2.3. Observe that

Sβ0(R)⊠i · · ·⊠i S
βn(R) ⊆ Lβ0

∞(E0)⊗̂i · · · ⊗̂iL
βn
∞ (En)

no matter what spectral measures Ei are taken.

Proposition 3.2.4. If ϕ ∈ Sα0(R)⊠i · · · ⊠i S
αn(R) and ψ ∈ Sβ0(R)⊠i · · · ⊠i S

βn(R),

then

Φ(λ0, . . . ,λn) := ϕ(λ0, . . . ,λn)ψ(λ0, . . . ,λn) ∈ Sα0+β0(R)⊠i · · ·⊠i S
αn+βn(R).

An analogous statement holds for the spaces Lβ∞(E).

Proof. According to Definition 3.2.1, we can find σ-finite measure spaces (Ω, ν), (Σ,µ)

and measurable functions ai : R × Ω → C, bi : R × Σ → C such that

ϕ(λ0, . . . ,λn) =
∫

Ω
a0(λ0,ω) · · · an(λn,ω) dν(ω);

ψ(λ0, . . . ,λn) =
∫

Σ
b0(λ0,σ) · · · bn(λn,σ) dµ(σ).

As observed above, the maps

ω 7→ ∥ai(·,ω)∥Sαi (R),k

are measurable, similarly for the functions bi.

Using Tonelli’s theorem,∫
Ω×Σ

∣∣∣a0(λ0,ω)b0(λ0,σ) · · · an(λn,ω)bn(λn,σ)
∣∣∣ d(ν × µ)(ω,σ)

≤ ⟨λ0⟩α0+β0 · · · ⟨λn⟩αn+βn

∫
Ω

∥a0(·,ω)∥Sα0 ,0 · · · ∥an(·,ω)∥Sαn ,0 dν(ω)

×
∫

Σ
∥b0(·,σ)∥Sβ0 ,0 · · · ∥bn(·,σ)∥Sβn ,0 dµ(σ) < ∞.
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Hence, by Fubini’s theorem

Φ(λ0, . . . ,λn) =
∫

Ω×Σ
a0(λ0,ω)b0(λ0,σ) · · · an(λn,ω)bn(λn,σ) d(ν × µ)(ω,σ).

The fact that Φ ∈ Sα0+β0(R)⊠i · · ·⊠i S
αn+βn(R) now follows from the computation

∥ak(·,ω)bk(·,σ)∥Sαk+βk ,m ≤
m∑
j=0

(
m

j

)
∥ak(·,ω)∥Sαk ,j∥bk(·,σ)∥Sβk ,m−j .

The following theorem is the first main result of this chapter. It is a construction of

multiple operator integrals adapted to the abstract pseudodifferential calculus by Connes

and Moscovici which we have seen in Chapter 2.

Theorem 3.2.5. Let Hi ∈ ophi(Θ), hi > 0, i = 0, . . . ,n, be Θ-elliptic symmetric opera-

tors with spectral measures Ei, and let ϕ ∈ Lβ0
∞(E0)⊠i · · ·⊠i L

βn
∞ (En), given with explicit

representation

ϕ(λ0, . . . ,λn) =
∫

Ω
a0(λ0,ω) · · · an(λn,ω) dν(ω), λi ∈ σ(Hi), i = 0, . . . ,n.

Then the integral

TH0,...,Hn

ϕ (X1, . . . ,Xn)ψ :=
∫

Ω
a0(H0,ω)X1a1(H1,ω) · · ·Xnan(Hn,ω)ψ dν(ω), ψ ∈ H∞,

for X1, . . . ,Xn ∈ op(Θ), converges as a Bochner integral in Hs for every s ∈ R, and

defines an n-multilinear map

TH0,...,Hn

ϕ : opr1(Θ) × · · · × oprn(Θ) → op
∑

j
rj+
∑

j
βjhj (Θ)

depending on Ω and the functions a0, . . . , an only through the symbol ϕ. For s ∈ R we

have the estimate

∥∥∥TH0,...,Hn

ϕ (X1, . . . ,Xn)
∥∥∥

H
s+
∑

j
rj+
∑

j
βj hj →Hs

≲
n∏
j=1

∥Xj∥Hsj+rj →Hsj ∥ϕ∥
L

β0
∞ (E0)⊠i···⊠iL

βn
∞ (En)

,

for some specific s1, . . . , sn ∈ R depending on hj , rj ,βj.
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For Θ = 1H and β0 = · · · = βn = 0, it is immediate that aj(Hj ,ω) ∈ op(1H) = B(H)

and

∥aj(Hj ,ω)∥Hs→Hs = ∥aj(·,ω)∥L0
∞(Ej),

and the above theorem reduces to Peller’s construction of MOIs [Pel06; Pel16]. Hence,

this theorem is a strict generalisation of his results. The proof is a subtle modification of

(aspects of) the proofs presented in [ACDS09; Pel06].

Proof of Theorem 3.2.5. Fix the Θ-elliptic symmetric operators Hi ∈ ophi(Θ), hi > 0,

i = 0, . . . ,n, with spectral measures Ei, and the function ϕ : Rn+1 → C

ϕ(λ0, . . . ,λn) =
∫

Ω
a0(λ0,ω) · · · an(λn,ω) dν(ω),

where (Ω, ν) is a finite measure space and the functions aj : R × Ω → C are measurable

and such that (x,ω) 7→ aj(x,ω)⟨x⟩−βj is Ej × ν-a.e. bounded for βj ∈ R.

By Theorem 2.2.3, we have that H∞ ⊆ dom aj(Hj ,ω). Now fix ω ∈ Ω and take η, ξ ∈ H∞.

Then [Sch12, Theorem 4.13] gives that

aj(Hj ,ω)ξ = lim
n→∞

aj(Hj ,ω)χ[−n,n](Hj)ξ,

where χ[−n,n] is the indicator function of the interval [−n,n], because ess sup|λ|≤n |aj(λ,ω)| <

∞. Now Proposition 3.1.3 gives that

ω 7→ ⟨η, aj(Hj ,ω)ξ⟩Hs = lim
n→∞

⟨Θ2sη, aj(Hj ,ω)χ[−n,n](Hj)ξ⟩H

is measurable for all s ∈ R.

Let now Xi ∈ opri(Θ), i = 1, . . . ,n. Fix s ∈ R and define s0, . . . , s2n+1 ∈ R with

s0 := s, s2n+1 := s+
n∑
i=0

βihi +
n∑
i=1

ri,

so that the operators aj(Hj ,ω) and Xj extend to bounded operators

aj(Hj ,ω) ∈ B(Hs2j+1 , Hs2j ),

Xj ∈ B(Hs2j , Hs2j−1).
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By the previous argument,

ω 7→ aj(Hj ,ω) ∈ B(Hs2j+1 , Hs2j )

is weakly measurable since H∞ is dense in both Hs2j and Hs2j+1 .

Using the functional calculus in Theorem 2.2.3,

∥aj(Hj ,ω)∥Hs2j+1 →Hs2j ≤ Cs,Hj ∥aj(·,ω)∥
L

βj
∞ (Ej)

,

and so we have that∫
Ω

∥a0(H0,ω)X1a1(H1,ω) · · ·Xnan(Hn,ω)∥Hs2n+1 →Hs0 dν(ω)

≲
n∏
j=1

∥Xj∥Hs2j →Hs2j−1

∫
Ω

n∏
j=0

∥aj(·,ω)∥
L

βj
∞ (Ej)

d|ν|(ω) < ∞,

where Lemma 3.1.5 ensures the right-hand side is defined. This is a finite quantity

since aj(x,ω)⟨x⟩−βj is Ej × ν − a.e. bounded and ν is a finite measure space. There-

fore, Lemma 3.1.2 provides that∫
Ω
a0(H0,ω)X1a1(H1,ω) · · ·Xnan(Hn,ω) dν(ω)

defines an operator in the weak sense in B(Hs2n+1 , Hs0) with∥∥∥∥∥
∫

Ω
a0(H0,ω)X1a1(H1,ω) · · ·Xnan(Hn,ω) dν(ω)

∥∥∥∥∥
Hs2n+1 →Hs0

≲
n∏
j=1

∥Xj∥Hs2j →Hs2j−1

∫
Ω

n∏
j=0

∥aj(·,ω)∥
L

βj
∞ (Ej)

d|ν|(ω).
(3.3)

With Pettis’ theorem [VTC87, Propositions 1.9 and 1.10], it now follows that for ψ ∈

Hs2n+1 ,

ω 7→ a0(H0,ω)X1a1(H1,ω) · · ·Xnan(Hn,ω)ψ ∈ Hs

is Bochner integrable in Hs. This holds in particular for ψ ∈ H∞, and as s ∈ R was taken

arbitrarily it follows that for ψ ∈ H∞,∫
Ω
a0(H0,ω)X1a1(H1,ω) · · ·Xnan(Hn,ω)ψ dν(ω) ∈ H∞.

It is therefore clear that we have a well-defined operator∫
Ω
a0(H0,ω)X1a1(H1,ω) · · ·Xnan(Hn,ω) dν(ω) ∈ op

∑
j
rj+
∑

j
βjhj (Θ).
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The claim that this operator is independent of the chosen representation of ϕ

ϕ(λ0, . . . ,λn) =
∫

Ω
a0(λ0,ω) · · · an(λn,ω) dν(ω)

permits taking the infimum over all representations on the right-hand side of the esti-

mate (3.3) giving the norm estimate in the assertion of this theorem. This independence

follows from the proof of [ACDS09, Lemma 4.3]. Namely, given η, ξ ∈ H∞, it is easy to

check that θη,ξ : H∞ → H∞ defined by

θη,ξ(ψ) := ⟨η,ψ⟩Hξ, ψ ∈ H∞,

is an element of op−∞(Θ). The computations in [ACDS09, Lemma 4.3] give that, for

ηk, ξk ∈ H∞, the integral∫
Ω
a0(H0,ω)θη1,ξ1a1(H1,ω) · · · θηn,ξnan(Hn,ω) dν(ω) ∈ B(H)

does not depend on the chosen representation of ϕ, and so neither does∫
Ω
a0(H0,ω)θη1,ξ1a1(H1,ω) · · · θηn,ξnan(Hn,ω) dν(ω)

∣∣∣∣∣
H∞

∈ op−∞(Θ).

The so-density of the span of {θη,ξ : η, ξ ∈ H∞} in B(Hs2i , Hs2i−1) combined with

Lemma 3.1.4 concludes the proof.

Proposition 3.2.6. The MOI constructed in Theorem 3.2.5 is linear in its symbol:

TH0,...,Hn

αϕ+βψ (X1, . . . ,Xn) = αTH0,...,Hn

ϕ (X1, . . . ,Xn) + βTH0,...,Hn

ψ (X1, . . . ,Xn), α,β ∈ C.

Proof. If both ϕ,ψ : Rn+1 → C have an integral representation of the required form over

measure spaces Ω and Σ respectively, then αϕ+ βψ can be decomposed appropriately

as an integral over the disjoint union Ω ⊔ Σ. The assertion then follows by elementary

arguments.

Remark 3.2.7. The MOI constructed in Theorem 3.2.5 is independent of the operator Θ

defining the abstract pseudodifferential calculus in the following sense. If Hi and Xi are

operators on H such that Xi|H∞ ∈ opri(Θ) and ai(Hi,ω)|H∞(Θ) ∈ opβihi(Θ) satisfying
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the conditions of Theorem 3.2.5, then the proof of Theorem 3.2.5 shows that we can define

TH0,...,Hn

ϕ (X1, . . . ,Xn) : H
∑

i
ri+
∑

i
βihi → H by

TH0,...,Hn

ϕ (X1, . . . ,Xn)ψ =
∫

Ω
a0(H0,ω)V1a1(H1,ω) · · ·Vnan(Hn,ω)ψ dν(ω) ∈ H,

ψ ∈ H
∑

i
ri+
∑

i
βihi ,

which is a map that, apart from the definition of its domain, does not depend on Θ.

Furthermore, using the functional calculus for op0(Θ) in Theorem 2.3.7, we can similarly

define multiple operator integrals for op0(Θ).

Theorem 3.2.8. Let Hi, [Θ,Hi] ∈ op0(Θ), i = 0, . . . ,n, be such that each Hi
0,0 is self-

adjoint. For ϕ ∈ T 0(R)⊠i · · ·⊠i T
0(R) with corresponding representation

ϕ(λ0, . . . ,λn) =
∫

Ω
a0(λ0,ω) · · · an(λn,ω) dν(ω),

the integral

TH0,...,Hn

ϕ (X1, . . . ,Xn)ψ :=
∫

Ω
a0(H0,ω)X1a1(H1,ω) · · ·Xnan(Hn,ω)ψ dν(ω), ψ ∈ H∞

for X1, . . . ,Xn ∈ op(Θ), converges as a Bochner integral in Hs for every s ∈ R, and

defines an n-multilinear map TH0,...,Hn

ϕ : opr1(Θ) × · · · × oprn(Θ) → op
∑

j
rj (Θ).

Proof. By definition of T 0(R)⊠i · · ·⊠i T
0(R) we have for all k0, . . . , kn ∈ N,∫

Ω
∥a0(·,ω)∥T 0(R),k0 · · · ∥an(·,ω)∥T 0(R),kn

d|ν|(ω) < ∞.

The proof of the theorem is then identical to the proof of Theorem 3.2.5, using that

∥aj(Hj ,ω)∥Hs→Hs ≤
⌈2|s|⌉+1∑
k=0

∥aj(·,ω)∥T 0(R),k,

see Theorem 2.3.7.
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3.3 Divided differences

The conditions that appear in Theorem 3.2.5 and Theorem 3.2.8 on the symbol ϕ : Rn+1 →

C need to be analysed more closely in order to prepare these multiple operator integral

constructions for practical applications. The main result of this section is Lemma 3.3.1,

which gives that for f ∈ T β(R), β ∈ R, the divided difference f [n] has an integral rep-

resentation satisfying the conditions of the MOI construction for Θ-elliptic operators in

Theorem 3.2.5, and that for f ∈ C∞(R) the divided difference f [n] can be used in the

MOIs for zero-order operators in Theorem 3.2.8.

First of all, for functions ϕ : Rn+1 → C it is an equivalent condition to admit a represen-

tation

ϕ(λ0, . . . ,λn) =
∫

Ω
a0(λ0,ω) · · · an(λn,ω) dν(ω)

for a finite complex measure space (technically: of finite variation) (Ω, ν) and measurable

functions aj : R × Ω → C such (x,ω) 7→ aj(x,ω)⟨x⟩−βj is Ej × ν-a.e. bounded for βj ∈ R,

or a representation

ϕ(λ0, . . . ,λn) =
∫

Σ
b0(λ0,σ) · · · bn(λn,σ) dµ(σ),

where Σ is a σ-finite measure space, bj : R × Ω → C measurable, and∫
Σ

∥b0(·,σ)∥Lβ0
∞ (E0)

· · · ∥bn(·,σ)∥Lβn
∞ (En)

d|µ|(σ) < ∞.

Namely, given the second representation, a representation of the first type can be obtained

by putting [ST19, p.48]

aj(λj ,σ) :=
bj(λj ,σ)

∥bj(·,σ)∥
L

βj
∞ (Ej)

, ν(σ) := ∥b0(·,σ)∥Lβ0
∞ (E0)

· · · ∥bn(·,σ)∥Lβn
∞ (En)

µ(σ).

We now again use the construction of an almost analytic extension (see Definition 2.3.1)

to provide an explicit integral representation for f ∈ T β(R). Recall the definition of the

product ⊠i, Definition 3.2.1.

Lemma 3.3.1. 1. Take n ∈ N, let α be some real number with −1 ≤ α ≤ n, and

consider any collection of real numbers −1 ≤ β0, . . . ,βn ≤ 0 such that
∑
βj = α−n.
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Then

f ∈ Tα(R) ⇒ f [n] ∈ Sβ0(R)⊠i · · ·⊠i S
βn(R),

where for each k0, . . . , kn ∈ N we have

∥f [n](λ0, . . . ,λn)∥Sβ0 (R)⊠i···⊠iSβn (R),k0,...,kn
≲

n+
∑n

j=0 kj+2∑
r=0

∥f∥Tα(R),r.

2. Let α ≤ n. Then

f ∈ Tα(R) ⇒ f [n] ∈
∑

β0,...,βn≤0∑
βj=α−n

Sβ0(R)⊠i · · ·⊠i S
βn(R).

For each component ϕ ∈ Sβ0(R)⊠i · · · ⊠i S
βn(R) in the (finite) decomposition, we

have

∥ϕ∥Sβ0 (R)⊠i···⊠iSβn (R),k0,...,kn
≲

n+
∑n

j=0 kj+2∑
r=0

∥f∥Tα(R),r.

3. Let α ≥ n. Then

f ∈ Tα(R) ⇒ f [n] ∈
∑∑
βj=α−n

Sβ0(R)⊠i · · ·⊠i S
βn(R).

For each component ϕ ∈ Sβ0(R)⊠i · · · ⊠i S
βn(R) in the (finite) decomposition, we

have

∥ϕ∥Sβ0 (R)⊠i···⊠iSβn (R),k0,...,kn
≲

n+
∑n

j=0 kj+2∑
r=0

∥f∥Tα(R),r.

Proof. 1. For g ∈ C∞
c (R) with almost analytic extension g̃, we have

g(x) = − 1
π

∫
C

∂g̃

∂z
(z − x)−1 dz,

and hence

g[n](λ0, . . . ,λn) =
(−1)n
π

∫
C

∂g̃

∂z
(z − λ0)

−1 · · · (z − λn)
−1 dz. (3.4)
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Now take f ∈ Tα(R) with α ≤ n and with almost analytic extension f̃ . Directly from

Definition 2.3.1, writing σ(z) := τ ( ℑ(z)
⟨ℜ(z)⟩ ), it follows that (cf. [Dav95a, Section 2.2])

∂f̃

∂z
=

1
2

(
N∑
r=0

f (r)(ℜ(z))
(iℑ(z))r

r!

)
(σx(z) + iσy(z)) +

1
2f

(N+1)(ℜ(z))
(iℑ(z))N

n!
σ(z).

We define

U := {z ∈ C : ⟨ℜ(z)⟩ < |ℑ(z)| < 2⟨ℜ(z)⟩}, V := {z ∈ C : 0 ≤ |ℑ(z)| < 2⟨ℜ(z)⟩},

and note that the support of σ is contained in V , while the support of σx and σy are

contained in U . More precisely,

|σx(z) + iσy(z)| ≲
1

⟨ℜ(z)⟩
χU (z).

Therefore we have the estimate [Dav95b, Lemma 1]∫
C

∣∣∣∣∣∂f̃∂z
∣∣∣∣∣|z − λ0|−1 · · · |z − λn|−1 dz

≲
N∑
r=0

∫
U

|f (r)(ℜ(z))||ℑ(z)|r−n−1⟨ℜ(z)⟩−1 dz +
∫
V

|f (N+1)(ℜ(z))||ℑ(z)|N−n−1 dz

≲
N+1∑
r=0

∫
R

|f (r)(x)|⟨x⟩r−n−1 dx =
N+1∑
r=0

∥f∥Tn(R),r,

where the last estimate (integration over the imaginary direction) is justified when

N ≥ n+ 1.

Hence the integral

(−1)n
π

∫
C

∂f̃

∂z
(z − λ0)

−1 · · · (z − λn)
−1 dz

converges.

Since [Dav95b, Lemma 6] gives that C∞
c (R) is dense in Tα(R), the Lebesgue

dominated convergence theorem then gives that the identity (3.4) extends to all

f ∈ Tα(R), α ≤ n, i.e.

f [n](λ0, . . . ,λn) =
(−1)n
π

∫
C

∂f̃

∂z
(z − λ0)

−1 · · · (z − λn)
−1 dz.
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In order to show that this is a decomposition as described in Definition 3.2.1, with

aj(λj , z) = (z − λj)−1, we will now estimate the expressions

∥(z − ·)−1∥Sβ(R),k = sup
λ∈R

⟨λ⟩k−β
∣∣∣∣∣ ∂k∂λk (z − λ)−1

∣∣∣∣∣
≲

(
sup
λ∈R

⟨λ⟩−β|z − λ|−1
)

·
(

sup
λ∈R

⟨λ⟩k|z − λ|−k
)

.
(3.5)

Note that, for λ ∈ R and z ∈ C \ R,

⟨λ⟩
|z − λ|

=
|λ± i|
|z − λ|

≤ 1 + |z ± i|
|z − λ|

≤ 1 + ⟨z⟩
|ℑ(z)|

,
(3.6)

as min(|z + i|, |z − i|) ≤ ⟨z⟩. Next, we estimate

sup
λ∈R

⟨λ⟩−β|z − λ|−1

for −1 ≤ β ≤ 0. We estimate the supremum over λ > 1, |λ| ≤ 1 and λ < −1

separately. First, for |λ| ≤ 1 we have 1 ≤ ⟨λ⟩ ≤
√

2, and so

sup
|λ|≤1

⟨λ⟩−β|z − λ|−1 ≲
1

|ℑ(z)|
.

For λ > 1, we have ⟨λ⟩ ≤
√

2λ, so that

sup
λ>1

⟨λ⟩−β|z − λ|−1 ≲ sup
λ>1−ℜ(z)

(λ+ ℜ(z))−β(
λ2 + ℑ(z)2

) 1
2

.

Writing v = (λ, ℑ(z)) ∈ R2, then by using Cauchy–Schwarz for the inner product

on R2, we have

sup
λ>1−ℜ(z)

(λ+ ℜ(z))−β(
λ2 + ℑ(z)2

) 1
2
= sup

λ>1−ℜ(x)

(v · (1, ℜ(z)
ℑ(z) ))

−β

∥v∥

≤ sup
λ>1−ℜ(z)

∥(1, ℜ(z)
ℑ(z) )∥

−β

∥v∥1+β

≤ |z|−β

|ℑ(z)|
.
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For λ < −1 we have a similar estimate, and hence combined we have

sup
λ∈R

⟨λ⟩−β|z − λ|−1 ≲
1

|ℑ(z)|
max(1, |z|−β) ≤ ⟨z⟩−β

|ℑ(z)|
. (3.7)

Combining (3.5), (3.6) and (3.7) we get an estimate

sup
λ∈R

⟨λ⟩k−β
∣∣∣∣∣ ∂k∂λk (z − λ)−1

∣∣∣∣∣ ≲ ⟨z⟩−β

|ℑ(z)|

(
1 + ⟨z⟩

|ℑ(z)|

)k
.

Let −1 ≤ β0, . . . ,βn ≤ 0. Taking the inequality above and proceeding as before with

N ≥ n+ 1 +∑n
j=0 kj , we have

∫
C

∣∣∣∣∣∂f̃∂z
∣∣∣∣∣
(

sup
λ0∈R

⟨λ0⟩k0−β0

∣∣∣∣∣ ∂k0

∂λk0
0
(z − λ0)

−1
∣∣∣∣∣
)

· · ·
(

sup
λn∈R

⟨λn⟩kn−βn

∣∣∣∣∣ ∂kn

∂λkn
n

(z − λ0)
−1
∣∣∣∣∣
)
dz

≲
N+1∑
r=0

∫
R

|f (r)(x)|⟨x⟩r−n−1−
∑n

j=0 βj dx < ∞.

This converges in particular for ∑n
j=0 βj = α− n. Since −n− 1 ≤

∑n
j=0 βj ≤ 0, this

choice is possible if −1 ≤ α ≤ n. We have therefore proved for −1 ≤ α ≤ n, and

−1 ≤ β0, . . . ,βn ≤ 0 such that ∑n
j=0 βj = α− n, that

∥f [n](λ0, . . . ,λn)∥Sβ0 (R)⊠i···⊠iSβn (R),k0,...,kn

=
∫

C
∥(z − ·)−1∥Sβ0 (R),k0

· · · ∥(z − ·)−1∥Sβn (R),kn

∣∣∣∣∣∂f̃∂z
∣∣∣∣∣ dz

≲

n+
∑n

j=0 kj+2∑
r=0

∥f∥Tn(R),r ≤
n+
∑n

j=0 kj+2∑
r=0

∥f∥Tα(R),r.

2. For f ∈ Tα(R), −1 ≤ α ≤ n, we have by the first part of the lemma that for each

n ∈ N,

f [n] ∈ Sβ0(R)⊠i · · ·⊠i S
βn(R)

where each βj can be chosen to lie in the interval [−1, 0], and ∑βj = α− n.

For f ∈ Tα(R) with α ≤ −1, we can write f = g · (x+ i)−k where g ∈ T β(R),

−1 ≤ β ≤ 0 and k ∈ N. The Leibniz rule for divided differences dictates

f [n](λ0, . . . ,λn) =
n∑
l=0

g[l](λ0, . . . ,λl)
(
(x+ i)−k

)[n−l]
(λl, . . . ,λn).
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From part 1 and the explicit form of the divided differences of
(
(x+ i)−k

)[n]
we

therefore conclude that each term is an element of

∑
β0,...,βn≤0∑
βj=α−k−n

Sβ0(R)⊠i · · ·⊠i S
βn(R),

with the required estimate of norms.

3. This follows analogously to assertion 2, by analysing
(
g(x+ i)k

)[n]
for g ∈ Tα(R)

with −1 ≤ α ≤ 0.

Remark 3.3.2. The proof of Lemma 3.3.1 in fact shows that if f ∈ Cn+2(R) such that

∥f∥Tβ(R),k < ∞ for k = 0, . . . ,n+ 2, then given any spectral measures E0, . . . ,En, we

have

∥f [n]∥
L

β0
∞ (E0)⊗̂i···⊗̂iL

βn
∞ (En)

≤ ∥f [n]∥Sβ0 (R)⊠i···⊠iSβn (R),0,...,0 ≤
n+2∑
k=0

∥f∥Tβ(R),k < ∞.

For n = 0, the space of functions that satisfy this condition closely resembles the space

Fm(R) used in [Car+16] in the context of double operator integrals.

Theorem 3.3.3. Let H0, . . . ,Hn be such that each Hi ∈ oph(Θ),h > 0, is Θ-elliptic and

symmetric, and let f ∈ Cn+2(R) such that ∥f∥Tβ(R),k < ∞, k = 0, . . . ,n+ 2 for some

β ∈ R. Then for any Xi ∈ opri(Θ), i = 1, . . . ,n,

TH0,...,Hn

f [n] (X1, . . . ,Xn) ∈ opr+(β−n)h(Θ),

with the estimate

∥TH0,...,Hn

f [n] (X1, . . . ,Xn)∥Hs+r+(β−n)h→Hs ≤ Cs,H0,...,Hn

(
n+2∑
k=0

∥f∥Tβ(R),k

)
n∏
i=1

∥Xi∥Hsi+ri →Hsi

for some s1, . . . , sn ∈ R.

Proof. Lemma 3.3.1 and Remark 3.3.2, combined with Theorem 3.2.5.

Theorem 3.3.4. Let Hi, [Θ,Hi] ∈ op0(Θ), i = 0, . . . ,n, be such that each Hi
0,0 : H → H

is self-adjoint, and let f ∈ C∞(R). Then

TH0,...,Hn

f [n] (X1, . . . ,Xn) ∈ op
∑

j
rj (Θ).
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Proof. Lemma 3.3.1 and Remark 3.3.2, combined with Theorem 3.2.5.

Due to Lemma 3.3.1, the divided difference f [n] for f ∈ C∞(R) is in particular a permitted

symbol for Theorem 3.2.8.

3.4 MOI identities

The most important identities for our applications of our multiple operator integrals are

the following. These are generalisations of the identities

[f(H),X ] = TH,H
f [1]

([H,X ]);

f(H +X) − f(H) = TH+X,H
f [1]

(X),

seeing that f(H) = TH
f [0]

().

Proposition 3.4.1. Let a,X1, . . . ,Xn ∈ op(Θ), let Hi ∈ ophi(Θ), hi > 0 be symmetric

and Θ-elliptic and let f ∈ T β(R), β ∈ R. Then

TH0,...,Hn

f [n] (X1, . . . ,Xj , aXj+1, . . . ,Xn) − TH0,...,Hn

f [n] (X1, . . . ,Xja,Xj+1, . . . ,Xn) (3.8)

= T
H0,...,Hj ,Hj ,...,Hn

f [n+1] (X1, . . . ,Xj , [Hj , a],Xj+1, . . . ,Xn);

TH0,...,Hn

f [n] (aX1, . . . ,Xn) − aTH0,...,Hn

f [n] (X1, . . . ,Xn) (3.9)

= TH0,H0,H1,...,Hn

f [n+1] ([H0, a],X1, . . . ,Xn);

TH0,...,Hn

f [n] (X1, . . . ,Xn)a− TH0,...,Hn

f [n] (X1, . . . ,Xna) (3.10)

= TH0,...,Hn,Hn

f [n+1] (X1, . . . ,Xn, [Hn, a]).

Moreover, for A ∈ opa(Θ), a > 0, B ∈ opb(Θ), b > 0 symmetric and Θ-elliptic,

T
H0,...,Hj−1,A,Hj+1,...,Hn

f [n] (X1, . . . ,Xn) − T
H0,...,Hj−1,B,Hj+1,...,Hn

f [n] (X1, . . . ,Xn)

= T
H0,...,Hj−1,A,B,Hj+1,...,Hn

f [n+1] (X1, . . . ,Xj ,A−B,Xj+1, . . . ,Xn).
(3.11)

The same assertions hold for self-adjoint Hi,A,B ∈ op0(Θ) such that [Θ,Hi], [Θ,A], [Θ,B] ∈

op0(Θ) and with f ∈ C∞(R).
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Proof. We prove equation 3.8 in the Θ-elliptic case, the other identities and the zero-order

case follow analogously. For f ∈ T β(R), the multiple operator integrals appearing in the

equation are then well-defined, see Theorem 3.3.3.

Write

Fj(λ0, . . . ,λn+1) := f [n](λ0, . . . ,λj−1,λj+1, . . . λn+1),

and observe that

Fj+1(λ0, . . . ,λn+1) − Fj(λ0, . . . ,λn+1) = (λj − λj+1)f
[n+1](λ0, . . . ,λn+1).

Hence,

T
H0,...,Hj ,Hj ,...,Hn

f [n+1] (X1, . . . ,Xj , [Hj , a],Xj+1, . . . ,Xn)

= T
H0,...,Hj ,Hj ,...,Hn

(λj−λj+1)f [n+1] (X1, . . . ,Xj , a,Xj+1, . . . ,Xn)

= T
H0,...,Hj ,Hj ,...,Hn

Fj+1
(X1, . . . ,Xj , a,Xj+1, . . . ,Xn)

− T
H0,...,Hj ,Hj ,...,Hn

Fj
(X1, . . . ,Xj , a,Xj+1, . . . ,Xn)

= TH0,...,Hn

f [n] (X1, . . . ,Xj , aXj+1, . . . ,Xn)

− TH0,...,Hn

f [n] (X1, . . . ,Xja,Xj+1, . . . ,Xn).

With these identities in hand, we can show that the MOI constructed in the previous

section is an element of OP(Θ) if all its components are and the symbol is a divided

difference.

Theorem 3.4.2. Let H0, . . . ,Hn be such that each Hi ∈ OPh(Θ),h > 0, is symmetric and

Θ-elliptic, and let f ∈ T β(R) for some β ∈ R. For operators Xi ∈ OPri(Θ), r :=
∑n
i=1 ri,

we have that

TH0,...,Hn

f [n] (X1, . . . ,Xn) ∈ OPh(β−n)+r(Θ).

Similarly, if each Hi instead is such that Hi, [Θ,Hi] ∈ OP0(Θ) and Hi is self-adjoint, then

for any f ∈ C∞(R) we have that

TH0,...,Hn

f [n] (X1, . . . ,Xn) ∈ OPr(Θ).
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Proof. We focus on the Θ-elliptic case, the zero-order case follows similarly. Taking n = 1

to ease notation, using Proposition 3.4.1 gives that

[Θ,TH0,H1
f [1]

(X1)] = TH0,H0,H1
f [2]

([Θ,H0],X1) + TH0,H1
f [1]

([Θ,X1]) + TH0,H1,H1
f [2]

(X1, [Θ,H1]).

As [Θ,Hi] ∈ oph(Θ) and [Θ,X1] ∈ opr1(Θ), Lemma 3.3.1 combined with Theorem 3.2.5

gives that

TH0,H0,H1
f [2]

([Θ,H0],X1),TH0,H1
f [1]

([Θ,X1]),TH0,H1,H1
f [2]

(X1, [Θ,H1]) ∈ oph(β−n)+r(Θ).

Higher commutators and n > 1 follow analogously.

We have now proven Theorem 2.2.7 and Theorem 2.3.8 which were claimed in the previous

chapter: they are special cases of Theorem 3.4.2.

In the setting that Θ−1 ∈ Ls, s > 0, it is immediate from Theorem 3.2.5 and Theorem 2.2.3

that for H0, . . . ,Hn ∈ oph(Θ),h > 0 symmetric and Θ-elliptic, and f ∈ T β(R), the

multiple operator integral

TH0,...,Hn

f [n] (X1, . . . ,Xn) ∈ op(β−n)h+r(Θ) (3.12)

can be considered to be a trace-class operator on H if β is small enough. Namely, we have

∥A∥1 ≤ ∥Θ−s∥1∥A∥H0→Hs .

3.5 Asymptotic expansions

Through the identities proved in the previous section, the theory of multiple operator inte-

grals lends itself well for establishing asymptotic expansions of operators. As an immediate

example, we prove a noncommutative Taylor expansion for pseudodifferential operators.

Theorem 3.5.1. Let f ∈ T β(R), H ∈ oph(Θ), h > 0, Θ-elliptic and symmetric, and let

V ∈ opr(Θ) be symmetric. If the order of the perturbation V is strictly smaller than that

of H, i.e. r < h, we have

f(H + V ) ∼
∞∑
n=0

TH
f [n](V , . . . ,V ), (3.13)
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in the sense that

f(H + V ) −
N∑
n=0

TH
f [n](V , . . . ,V ) ∈ opmN (Θ)

with mN ↓ −∞.

Proof. Using the last part of Proposition 3.4.1 with A = H + V , B = H, we have

f(H + V ) − f(H) = TH+V
f [0]

() − TH
f [0]

()

= TH+V ,H
f [1]

(V ).

Repeating the argument, we get

f(H + V )−
N∑
n=0

TH
f [n](V , . . . ,V ) = TH+V ,H,...,H

f [N+1] (V , . . . ,V ).

Now, if r < h, Theorem 3.3.3 gives that

TH+V ,H,...,H
f [N+1] (V , . . . ,V ) ∈ op(β−N−1)h+Nr(Θ),

with

(β −N − 1)h+Nr = N(r− h) + (β − 1)h ↓ −∞.

Note that, if H and V are commuting operators, (3.13) recovers the classic Taylor ex-

pansion formula f(H + V ) ∼
∑∞
n=0

f (n)(H)
n! V n. Hence, the expansion (3.13) can be in-

terpreted as a type of noncommutative Taylor expansion. Each term in the expansion

can itself be expanded as follows. Recall that we write δH(X) := [H,X ], δnH(X) :=

δH(· · · δH(δH(X)) · · · ).

Proposition 3.5.2. Let Xi ∈ opri(Θ), H ∈ oph(Θ), h > 0 symmetric and Θ-elliptic,

and f ∈ T β(R). Then

TH
f [n](X1, . . . ,Xn) =

N∑
m=0

∑
m1+···+mn=m

Cm1,...,mn

(n+m)!
δm1
H (X1) · · · δmn

H (Xn)f
(n+m)(H)

+ SnN (X1, . . . ,Xn),
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where

Cm1,...,mn :=
n∏
j=1

(
j +m1 + · · · +mj − 1

mj

)

and the remainder SnN (X1, . . . ,Xn) is a sum of terms of the form

δm1
H (X1) · · · δmk

H (Xk)T
H
f [n+N+1](1, . . . , 1, δN+1−m1−···−mk

H (Xk+1), 1, . . . , 1,Xk+2, . . . ,Xn).

If the commutators δkH(Xj) have a lower order than the expected rj + kh, explicitly if

δkH(Xj) ∈ oprj+k(h−ε)(Θ)

for some ε > 0, then the above gives an asymptotic expansion

TH
f [n](X1, . . . ,Xn) ∼

∞∑
m=0

∑
m1+···+mn=m

Cm1,...,mn

(n+m)!
δm1
H (X1) · · · δmn

H (Xn)f
(n+m)(H),

in the sense that the remainder term

SnN (X1, . . . ,Xn) ∈ opmN (Θ)

with mN =
∑
j rj + (β − n)h− ε(N + 1) ↓ −∞.

The proof of this proposition is a lengthy combinatorial exercise, the computations of

which are standard and appear in many proofs of the local index formula [CPRS06a,

Lemma 6.11][CM95, Equation (71)][Hig04, Lemma 2.12], see also [Dal98; Pay11]. The

novelty is that they can be performed in the very general context of (unbounded) MOIs.

In effect, Proposition 3.5.2 is a generalisation of the cited results.

Definition 3.5.3. The multiset coefficient
((n
k

))
for n, k ∈ N is defined as((

n

k

))
:=

(
n+ k− 1

k

)
.

Lemma 3.5.4. For f ∈ T β(R), H ∈ oph(Θ), h > 0 symmetric and Θ-elliptic, Xi ∈

opri(Θ), we have

TH
f [n+j](1, . . . , 1︸ ︷︷ ︸

j

,X1, . . . ,Xn)

=
N∑
m=0

((
m+ 1
j

))
δmH (X1)T

H
f [n+j+m](1, . . . , 1︸ ︷︷ ︸

j+1+m

,X2, . . . ,Xn) +Rnj,N (X1, . . . ,Xn),
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where

Rnj,N (X1, . . . ,Xn) :=
j∑
l=0

((
N + 1
l

))
TH
f [n+j+N+1](1, . . . , 1︸ ︷︷ ︸

j−l

, δN+1
H (X1), 1, . . . , 1︸ ︷︷ ︸

N+1+l

,X2, . . . ,Xn).

Proof. Multiset coefficients have the property that

j∑
l=0

((
m

l

))
=

((
m+ 1
j

))
.

The assertion of the lemma follows by induction on N . For N = 0,

TH
f [n+j](1, . . . , 1︸ ︷︷ ︸

j

,X1, . . . ,Xn)

= X1T
H
f [n+j](1, . . . , 1︸ ︷︷ ︸

j+1

,X2, . . . ,Xn) +
j∑
l=0

TH
f [n+j+1](1, . . . , 1︸ ︷︷ ︸

j−l

, δH(X1), 1, . . . , 1︸ ︷︷ ︸
1+l

,X2, . . . ,Xn)

by applying Proposition 3.4.1 j + 1 times on X1.

Suppose that the assertion holds for N − 1. Then

TH
f [n+j](1, . . . , 1︸ ︷︷ ︸

j

,X1, . . . ,Xn)

=
N−1∑
m=0

((
m+ 1
j

))
δmH (X1)T

H
f [n+j+m](1, . . . , 1︸ ︷︷ ︸

j+1+m

,X2, . . . ,Xn)

+
j∑
l=0

((
N

l

))
TH
f [n+j+N ](1, . . . , 1︸ ︷︷ ︸

j−l

, δNH (X1), 1, . . . , 1︸ ︷︷ ︸
N+l

,X2, . . . ,Xn)

=∗
N−1∑
m=0

((
m+ 1
j

))
δmH (X1)T

H
f [n+j+m](1, . . . , 1︸ ︷︷ ︸

j+1+m

,X2, . . . ,Xn)

+
j∑
l=0

((
N

l

))
δNH (X1)T

H
f [n+j+N ](1, . . . , 1︸ ︷︷ ︸

N+1+j

,X2, . . . ,Xn)

+
j∑
l=0

((
N

l

)) j−l∑
k=0

TH
f [n+j+N+1](1, . . . , 1︸ ︷︷ ︸

j−l−k

, δN+1
H (X1), 1, . . . , 1︸ ︷︷ ︸

N+1+l+k

,X2, . . . ,Xn),

where in the step marked with ∗ we applied Proposition 3.4.1 j − l times on δNH (X1).
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Continuing on,

TH
f [n+j](1, . . . , 1︸ ︷︷ ︸

j

,X1, . . . ,Xn)

=
N−1∑
m=0

((
m+ 1
j

))
δmH (X1)T

H
f [n+j+m](1, . . . , 1︸ ︷︷ ︸

j+1+m

,X2, . . . ,Xn)

+

((
N + 1
j

))
δNH (X1)T

H
f [n+j+N ](1, . . . , 1︸ ︷︷ ︸

N+1+j

,X2, . . . ,Xn)

+
j∑
l=0

j−l∑
k=0

((
N

l

))
TH
f [n+j+N+1](1, . . . , 1︸ ︷︷ ︸

j−l−k

, δN+1
H (X1), 1, . . . , 1︸ ︷︷ ︸

N+1+l+k

,X2, . . . ,Xn).

In the last sum, relabel r := k+ l, so that

TH
f [n+j](1, . . . , 1︸ ︷︷ ︸

j

,X1, . . . ,Xn)

=
N∑
m=0

((
m+ 1
j

))
δmH (X1)T

H
f [n+j+m](1, . . . , 1︸ ︷︷ ︸

j+1+m

,X2, . . . ,Xn)

+
j∑
r=0

r∑
l=0

((
N

l

))
TH
f [n+j+N+1](1, . . . , 1︸ ︷︷ ︸

j−r

, δN+1
H (X1), 1, . . . , 1︸ ︷︷ ︸

N+1+r

,X2, . . . ,Xn)

=
N∑
m=0

((
m+ 1
j

))
δmH (X1)T

H
f [n+j+m](1, . . . , 1︸ ︷︷ ︸

j+1+m

,X2, . . . ,Xn)

+
j∑
r=0

((
N + 1
r

))
TH
f [n+j+N+1](1, . . . , 1︸ ︷︷ ︸

j−r

, δN+1
H (X1), 1, . . . , 1︸ ︷︷ ︸

N+1+r

,X2, . . . ,Xn).

This concludes the induction step.

Proof of Proposition 3.5.2. Apply Lemma 3.5.4 first to the first entry of TH
f [n](X1, . . . ,Xn),

TH
f [n](X1, . . . ,Xn) =

N∑
m1=0

((
m1 + 1

0

))
δm1
H (X1)T

H
f [n+m1 ](1, . . . , 1︸ ︷︷ ︸

m1+1

,X2, . . . ,Xn)

+Rn0,N (X1, . . . ,Xn).
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Apply Lemma 3.5.4 once more, expanding up to order N −m1 instead of N .

TH
f [n](X1, . . . ,Xn)

=
N∑

m1=0

N−m1∑
m2=0

((
m1 + 1

0

))((
m2 + 1
m1 + 1

))
δm1
H (X1)δ

m2
H (X2)T

H
f [n+m1+m2 ]( 1, . . . , 1︸ ︷︷ ︸

2+m1+m2

,X3, . . . ,Xn)

+
N∑

m1=0

((
m1 + 1

0

))
δm1
H (X1)R

n−1
1+m1,N−m1

(X2, . . . ,Xn) +Rn0,N (X1, . . . ,Xn).

Repeating gives the formula

TH
f [n](X1, . . . ,Xn)

=
N∑
m=0

∑
m1+···+mn=m

n∏
j=1

((
mj + 1

j − 1 +m1 + · · · +mj−1

))
δm1
H (X1) · · · δmn

H (Xn)T
H
f [n+m](1, . . . , 1︸ ︷︷ ︸

n+m

)

+ SnN (X1, . . . Xn),

where

SnN (X1, . . . Xn) :=
n−1∑
k=0

∑
m1+···+mk≤N

k∏
j=1

((
mj + 1

j − 1 +m2 + · · · +mj−1

))

× δm1
H (X1) · · · δmk

H (Xk)R
n−k
k+m1+···+mk,N−m1−···−mk

(Xk+1, . . . ,Xn).

The observation that ((
n

k

))
=

((
k+ 1
n− 1

))
,

and the definition ((
n

k

))
=

(
n+ k− 1

k

)
,

finishes the proof of the proposition.

Putting these results together, we now have a noncommutative Taylor expansion.

Theorem 3.5.5. Let f ∈ T β(R), H ∈ oph(Θ), h > 0, Θ-elliptic and symmetric, and let

V ∈ opr(Θ), r < h, be symmetric. Assume that

δkH(V ) ∈ opr+k(h−ε)(Θ)
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for some ε > 0. Then we have the noncommutative Taylor expansion

f(H + V ) ∼
∞∑

n,m=0

∑
m1+···+mn=m

Cm1,...,mn

(n+m)!
δm1
H (V ) · · · δmn

H (V )f (n+m)(H).

Proof. For N ,M > 0, Theorem 3.5.1 and Proposition 3.5.2 give

f(H + V ) =
N∑
n=0

M∑
m=0

∑
m1+···+mn=m

Cm1,...,mn

(n+m)!
δm1
H (V ) · · · δmn

H (V )f (n+m)(H)

+ opN(r−h)+(β−1)h(Θ) +
N∑
n=0

opnr+(β−n)h−ε(M+1)(Θ).

As (N ,M) → (∞, ∞), we see that the order of the remainder decreases to −∞.

The noncommutative Taylor expansion (3.13) features prominently in [Pay07] for classical

pseudodifferential operators on manifolds, and in [Dal98; Pay11] in a more abstract sense.

For bounded operators on Banach spaces, it has been studied in [HL24]. For related

expansions for bounded operators V , see also [Han06; Sui11; Skr18; NS22].

3.6 Trace expansions and NCG

The observation in the previous section that the local index formula is closely connected to

the noncommutative Taylor expansion in Theorem 3.5.5 leads us naturally to the topic of

asymptotic expansions of trace formulas. In various contexts of noncommutative geometry

and beyond, expansions are studied of the kind

Tr(f(tH + tV )) ∼
t↓0

∞∑
k=0

ckt
rk , (3.14)

for an increasing sequence rk ↑ ∞ and constants ck ∈ C, which means that as t ↓ 0

Tr(f(tH + tV )) =
N∑
k=0

ckt
rk +O(trN+1)

for every N ∈ R. Or, more generally (c.f. [EI18]),

Tr(f(tH + tV )) ∼
t↓0

∞∑
k=0

ρk(t), (3.15)
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where ρk(t) = O(trk) and

Tr(f(tH + tV )) =
N∑
k=0

ρk(t) +O(trN+1).

To study the asymptotic expansion of expressions like

Tr(ae−t(D+V )2
),

we will use a modified version of Theorem 3.5.1 and Proposition 3.5.2. For this purpose,

we need to make a more detailed analysis of norm bounds of MOIs and of the remainder

in the Taylor expansion in Theorem 3.5.1.

Proposition 3.6.1. Let Hi ∈ oph(Θ) for a fixed h > 0 be symmetric and Θ-elliptic

operators. If Xi ∈ opri(Θ), r :=
∑n
i=1 ri, f ∈ Tα(R) with α ≤ n, t ≤ 1, then

∥T tH0,...,tHn

f [n] (X1, . . . ,Xn)∥Hq+r+(α−n)h→Hq ≲ tα−n, q ∈ R.

Rephrased, if f ∈ T
u−r

h
+n, u ≤ r, then

∥T tH0,...,tHn

f [n] (X1, . . . ,Xn)∥Hq+u→Hq ≲ t
u−r

h , q ∈ R.

Proof. Lemma 3.3.1 gives that

f [n] ∈
∑

β0+···+βn=α−n
Sβ0(R)⊠i · · ·⊠i S

βn(R),

where each βi ≤ 0 since α ≤ n (recall Definition 3.2.1 for this notation). Consider one of

the summands, ϕ ∈ Sβ0(R)⊠i · · ·⊠i S
βn(R). Then

ϕ(λ0, . . . ,λn) = (λ0 + i)β0 · · · (λn + i)βn ·ψ(λ0, . . . ,λn),

for a function ψ ∈ S0(R)⊠i · · ·⊠i S
0(R), and thus, by Remark 3.2.3 and Theorem 3.2.5,

T tH0,...,tHn

ϕ (X1, . . . ,Xn)

= T tH0,...,tHn

ψ ((tH0 + i)β0X1(tH1 + i)β1 ,X2(tH2 + i)β2 , . . . ,Xn(tHn + i)βn).
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Corollary 2.2.4 and Theorem 3.2.5 give that

∥T tH0,...,tHn

ψ ((tH0 + i)β0X1(tH1 + i)β1 ,X2(tH2 + i)β2 , . . . ,Xn(tHn + i)βn)∥Hq+r+(α−n)h→Hq

≲ ∥(tH0 + i)β0∥Hq0+β0h→Hq0 · · · ∥(tHn + i)βn∥Hqn+βnh→Hqn ,

for qi some real numbers. Theorem 2.2.3 gives that

∥(tHj + i)βij∥Hqj+βj h→Hqj ≲ sup
x∈R

|(tx+ i)βj |⟨x⟩−βj ≲ tβj .

Therefore,

∥T tH0,...,tHn

ϕ (X1,X2, . . . ,Xn)∥Hq+r+(α−n)h→Hq ≲ tβ0+···+βk = tα−n.

Proposition 3.6.2. Let Θ−1 ∈ Ls, s > 0, f ∈ T β(R), H ∈ oph(Θ),h > 0 Θ-elliptic and

symmetric and V ∈ opr(Θ) symmetric. Let h > r ≥ 0 and β < − s
h . For every N ∈ N,

we have as t ↓ 0,

Tr(f(tH + tV )) =
N∑
n=0

tn Tr(T tH
f [n](V , . . . ,V )) +O(t(N+1)(1− r

h
)− s

h ).

Proof. The proof of Theorem 3.5.1 gives that

f(tH + tV ) =
N∑
n=0

T tH
f [n](tV , . . . , tV ) + T tH+tV ,tH,...,tH

f [N+1] (tV , . . . , tV ).

The condition β < − s
h assures that all terms on the left and right-hand side are trace-class

(cf. (3.12)). Furthermore, we have f ∈ T β(R) ⊆ T (N+1)(1− r
h
)− s

h (R) so that Proposi-

tion 3.6.1 provides that

∥T tH+tV ,tH,...,tH
f [N+1] (tV , . . . , tV )∥1

≲ tN+1∥T tH+tV ,tH,...,tH
f [N+1] (V , . . . ,V )∥H−s→H0

≲ t(N+1)(1− r
h
)− s

h .

This proposition makes it clear that to determine the coefficients of asymptotic expansions

of the type (3.14) or (3.15), it suffices to study the asymptotic expansions of the multiple

operator integral

Tr(T tH
f [n](V , . . . ,V )),

which we do with Proposition 3.5.2.
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Theorem 3.6.3. Let Θ−1 ∈ Ls, s > 0, f ∈ T β(R), H ∈ oph(Θ), h > 0 symmetric and

Θ-elliptic, V ∈ opr(Θ) symmetric. If h > r ≥ 0, β ≤ − s
h , and δnH(V ) ∈ opr+n(h−ε)(Θ),

then Tr(f(tH + tV )) admits an asymptotic expansion as t ↓ 0 of type (3.15) given by

Tr(f(tH + tV )) =
N∑
n=0

N∑
m=0

∑
m1+···+mn=m

tn+m
Cm1,...,mn

(n+m)!
Tr
(
δm1
H (V ) · · · δmn

H (V )f (n+m)(tH)
)

+O(tmN ),

where mN := (N + 1)min
(
ε
h , (1 − r

h )
)

− s
h , so that mN ↑ ∞ as N → ∞.

Proof. Combining Propositions 3.6.2 and 3.5.2, we have that

Tr(f(tH + tV )) =
N∑
n=0

N∑
m=0

tn+m
∑

m1+···+mn=m

Cm1,...,mn

(n+m)!
Tr
(
δm1
H (V ) · · · δmn

H (V )f (n+m)(tH)
)

+
N∑
n=0

tn Tr(SnN ,t(V , . . . ,V )) +O(t(N+1)(1− r
h
)− s

h ),

where SnN ,t(V , . . . ,V ) is a sum of terms of the form

tN+1δm1
H (V ) · · · δmk

H (V )T tH
f [n+N+1](1, . . . , 1, δN+1−m1−···−mk

H (V ), 1, . . . , 1,V , . . . ,V ).

We then estimate
∥∥∥tN+1δm1

H (V ) · · · δmk
H (V )T tH

f [n+N+1](1, . . . , 1, δN+1−m1−···−mk
H (V ), 1, . . . , 1,V , . . . ,V )

∥∥∥
1

≲ tN+1
∥∥∥δm1
H (V ) · · · δmk

H (V )T tH
f [n+N+1](1, . . . , 1, δN+1−m1−···−mk

H (V ), 1, . . . , 1,V , . . . ,V )
∥∥∥

H−s→H0

≤ tN+1
∥∥∥δm1
H (V ) · · · δmk

H (V )
∥∥∥

Hkr+(m1+···+mk)(h−ε)→H0

×
∥∥∥T tHf [n+N+1](1, . . . , 1, δN+1−m1−···−mk

H (V ), 1, . . . , 1,V , . . . ,V )
∥∥∥

H−s→Hkr+(m1+···+mk)(h−ε)
.

Applying Proposition 3.6.1 then provides that

∥SnN ,t(V , . . . ,V )∥1 ≲ tN+1− s+kr+(m1+···+mk)(h−ε)

h
− (n−k)r+(N+1−m1−···−mk)(h−ε)

h

= t−
s+nr

h
+(N+1) ε

h ,

and hence
N∑
n=0

tn Tr(SnN ,t(V , . . . ,V )) ≲
N∑
n=0

tn(1− r
h
)+(N+1) ε

h
− s

h .
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Defining

mN := (N + 1)min
(
ε

h
,
(
1 − r

h

))
− s

h

concludes the proof.

This expansion in fact partially answers a specific open problem posed by Eckstein and

Iochum in [EI18]. Given a spectral triple (A, H,D) it is a common assumption to require

the existence of an asymptotic expansion as t ↓ 0 of

Tr(ae−tD2
),

where a ∈ A. Their question is whether the existence of asymptotic expansions of

Tr(ae−t(D+V )2
)

can be deduced for suitable perturbations V from this, and whether it could be enough

for Tr(e−tD2
) to admit an asymptotic expansion.

First, we address the second part of the question by giving an explicit example where the

asymptotic expansion of Tr(e−tD2
) provides no control over the expansions of Tr(ae−tD2

).

Theorem 3.6.4. [EI18, Theorem 3.2] For a bounded operator a and invertible positive

operator D such that D−1 ∈ Ls, s > 0, the existence of an asymptotic expansion

Tr(ae−tD2
) ∼
t↓0

∞∑
k=0

ρk(t),

where

ρk(t) :=
∑
z∈Xk

(
d∑

n=0
cn,k logn t

)
t−z,

with cn,k ∈ C and for suitable sets Xk ⊂ C (for details, see [EI18, Theorem 3.2]), implies

the existence of a meromorphic continuation of

ζD2,a(s) := Tr(a|D|−2s)

to the complex plane, with poles of order at most d+ 1 located at points in
⋃∞
k=0Xk ⊂ C.
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Example 3.6.5. Let A = ℓ∞(Z≥1), H = ℓ2(Z≥1) where A is represented on H by

pointwise multiplication, and let D be the diagonal operator on H given by

Den = nen, n ≥ 1.

This is a spectral triple for trivial reasons: A acts on H by bounded operators, and

[D, a] = 0 for all a ∈ A. Despite being atypical, (A, H,D) satisfies most of the assumptions

commonly made in the literature in terms of smoothness or summability. The algebra A

is not separable, but all of the following arguments can be performed in a separable (even

finite dimensional) subalgebra of A.

It is a classical result that we have the asymptotic expansion

Tr(e−tD2
) =

∞∑
n=1

e−tn2 ∼
t↓0

√
π

2 t−
1
2 − 1

2,

see for example [Gil04, Lemma 3.1.3]. Nonetheless, the functions Tr(a|D|−2s) for a ∈ A

are very badly behaved. For example, let

a :=
∞∑
n=2

1
lognen ∈ A,

so that

ζa,D2(s) = Tr(aD−2s) =
∞∑
n=2

1
lognn

−2s, ℜ(s) >
1
2,

which is holomorphic on ℜ(s) > 1
2 . Now,

d

ds
ζa,D2(s) = −2

∞∑
n=2

n−2s

= 2 − 2ζ(2s), ℜ(s) >
1
2,

where ζ is the Riemann zeta function which has a simple pole at 1. Therefore, ζa,D2(s) +

log(2s − 1) is the antiderivative of an entire function, which implies that ζa,D2(s) =

− log(2s − 1) + f(s) where f(s) is entire [Rud87, Theorem 10.14]. We conclude that

ζa,D2 does not admit a meromorphic extension to the complex plane, and thus Tr(ae−tD2
)

does not have an asymptotic expansion as t ↓ 0 of the type in Theorem 3.6.4.

An even more pathological example is

b :=
∞∑
n=2

Λ(n)

log(n)en
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where Λ is the von Mangoldt function which satisfies

Λ(n) :=


log(p) if n = pk for p prime;

0 otherwise.

A classical formula asserts that [Tit86, p.4]

ζb,D(s) = Tr(b|D|−s) =
∞∑
n=2

Λ(n)

log(n)n
−s = log ζ(s), ℜ(s) > 1

which is badly behaved at every zero of ζ and at s = 1.

To answer the first part of the question, we deduce the following.

Corollary 3.6.6. Let (A, H,D) be a regular s-summable spectral triple, s > 0. Let

V ,P ∈ B, V self-adjoint and bounded, where B is the algebra generated by A and D.

Then for all f ∈ T β(R) with β < −s, the expressions

Tr(f(tD+ tV )), Tr(Pe−t(D+V )2
) and Tr(Pe−t|D+V |)

admit an asymptotic expansion as t ↓ 0 given respectively by

Tr(f(tD+ tV )) =
N∑
n=0

N∑
m=0

∑
m1+···+mn=m

tn+m
Cm1,...,mn

(n+m)!
Tr
(
δm1
D (V ) · · · δmn

D (V )f (n+m)(tD)
)

+O(tN+1−s),

where Cm1,...,mn is the same as in Proposition 3.5.2,

Tr(Pe−t(D+V )2
) =

N∑
n=0

N∑
m=0

∑
m1+···+mn=m

(−t)n+mCm1,...,mn

(n+m)!
Tr(PA(m1) · · ·A(mn) exp(−tD2))

+O(t
N+1−s

2 ),

where A := DV + V D+ V 2, and A(m) := δmD2(A), and

Tr(Pe−t|D+V |) =
N∑
n=0

N∑
m=0

∑
m1+···+mn=m

(−t)n+mCm1,...,mn

(n+m)!
Tr(Pδm1

|D|(B) · · ·δmn

|D| (B) exp(−t|D|))

+O(t(N+1)(1−ε)−s),

where B := |D+ V | − |D| and ε > 0 can be picked arbitrarily small.
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Proof. Given a regular s-summable spectral triple (A, H,D), write Θ := (1 +D2)
1
2 . Let

V ,P ∈ B, V self-adjoint and bounded, where B is the algebra generated by A and D. If

f ∈ T β(R) with β < −s, Theorem 3.6.3 immediately gives that

Tr(f(tD+ tV )) =
N∑
n=0

N∑
m=0

∑
m1+···+mn=m

tn+m
Cm1,...,mn

(n+m)!
Tr
(
δm1
D (V ) · · · δmn

D + (V )f (n+m)(tD)
)

+O(tN+1−s).

Regarding the expansion of Tr(Pe−t(D+V )2
) we have that D2 ∈ OP2(Θ), A ∈ OP1(Θ)

since (A, H,D) is regular. As [D2,A] = [Θ2,A] = Θ[Θ,A] + [Θ,A]Θ, we have that

A(m) ∈ OP1+m(Θ). Furthermore, B ⊆ op(Θ). The proof of this corollary is then the

same as the proof of Theorem 3.6.3. Filling in

mN = (N + 1)min
(
ε

h
,
(
1 − r

h

))
− s

h
=
N + 1 − s

2

gives the order of the error term.

For the expansion of Tr(Pe−t|D+V |), while |D| ∈ OP1(Θ) due to Theorem 2.2.3, to con-

clude something similar for |D+ V | we have to do more work. Note that D has discrete

spectrum since (1 +D2)− 1
2 ∈ Ls. If V ∈ OP0(Θ) is self-adjoint, then D + V has real

discrete spectrum too. Hence we can modify the function x 7→ |x| slightly on a small

neighbourhood around x = 0 to get a smooth function f which has the property that

f(x) = |x| on σ(D + V ) ∪ σ(D), and f ∈ S1(R) since the second and higher deriva-

tives of f are all compactly supported. Using Theorem 3.3.3 and the observation that

S1(R) ⊆ T 1+ε(R) for all ε > 0, we have

|D+ V | ∈ OP1+ε(Θ), |D+ V | − |D| = TD+V ,D
f [1]

(V ) ∈ OPε(Θ).

Therefore, we get

Tr(Pe−t|D+V |) =
N∑
n=0

N∑
m=0

∑
m1+···+mn=m

(−t)n+mCm1,...,mn

(n+m)!
Tr(Pδm1

|D|(B) · · ·δmn

|D| (B) exp(−t|D|))

+O(t(N+1)(1−ε)−s),

where B := |D+ V | − |D| and ε > 0 can be chosen arbitrarily small.
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Apart from providing a perturbative expansion of the spectral action, Corollary 3.6.6

shows that if for all P ∈ B we have an expansion

Tr(Pe−tD2
) ∼
t↓0

∞∑
k=0

ck(P )t
rk (3.16)

for constants ck(P ) ∈ C, then for all P ∈ B self-adjoint and bounded there exist constants

ck(P ,V ) ∈ C such that

Tr(Pe−t(D+V )2
) ∼
t↓0

∞∑
k=0

ck(P ,V )trk .

Similarly, if each Tr(Pe−tD2
) admits an asymptotic expansions of the type in Theo-

rem 3.6.4, then Tr(Pe−t(D+V )2
) does too.

Remark 3.6.7. Corollary 3.6.6 can be modified to work for non-unital spectral triples.

Given a spectral triple (A, H,D) with non-unital algebra A writing Θ = (1 +D2)
1
2 , if

one assumes instead of Θ−1 ∈ Ls that there exists p ≥ 1 such that aΘ−s ∈ L1 for all

a ∈ A ∪ [D, A] and s > p as is proposed in [CGRS14], then we also have a · op−s(Θ) ∈ L1

for s > p. It follows that as t ↓ 0

Tr(af(tD+ tV )) =
N∑
n=0

N∑
m=0

tn+m
∑

m1+···+mn=m

Cm1,...,mn

(n+m)!
Tr
(
aδm1
D (V ) · · · δmn

D (V )f (n+m)(tD)
)

+O(tN+1−p)

for a ∈ A ∪ [D, A], V ∈ B bounded and self-adjoint, and f ∈ T β(R), β < −p.

We can now answer the first part of the question by Eckstein and Iochum. More precisely,

in [EI18, Chapter 5] the question is asked when, for a spectral triple (A, H,D), the ex-

istence of an asymptotic expansion of Tr(e−t|D|) implies the existence of an expansion of

Tr(e−t|D+V |) for a suitable perturbation V . Corollary 3.6.6 compared with Example 3.6.5

suggests that this is not generally possible. We illustrate this with the following example.

Example 3.6.8. Let us revisit Example 3.6.5 where (A, H,D) = (ℓ∞(Z≥1), ℓ2(Z≥1),D),

and D is defined by

Den = nen, n ≥ 1.
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We take as before

a :=
∞∑
n=2

1
lognen.

Noting that |D+ a| − |D| = a, we can apply Corollay 3.6.6 to get (in this situation we can

choose ε = 0)

Tr(e−t|D+a|) = Tr(e−tD) − tTr(ae−tD) +O(t).

Taking the Mellin transform we get for ℜ(s) > 1 (see [EI18, Proposition 2.10])

Tr(|D+ a|−s) = 1
Γ(s)

∫ ∞

0
ts−1 Tr(e−t|D+a|) dt

=
1

Γ(s)

∫ 1

0
ts−1 Tr(e−t|D+a|) dt+

1
Γ(s)

∫ ∞

1
ts−1 Tr(e−t|D+a|) dt.

Since

Tr(e−t|D+a|)) ≤ Tr(e−tD) = (et − 1)−1 ≤ 2e−t, t ≥ 1,

we have that

s 7→ 1
Γ(s)

∫ ∞

1
ts−1 Tr(e−t|D+a|) ds

is holomorphic. It follows that

Tr(|D+ a|−s) = 1
Γ(s)

∫ 1

0
ts−1 Tr(e−t|D+a|) dt+ holoC(s)

=
1

Γ(s)

∫ 1

0
ts−1 Tr(e−tD) − tTr(ae−tD) dt+ holoℜ(s)>−1(s)

= ζ0,D(s) − sζa,D(s+ 1) + holoℜ(s)>−1(s).

Since s 7→ ζa,D(s + 1) does not extend holomorphically to any punctured neighbour-

hood of s = 0 as the computations in Example 3.6.5 show, we conclude that ζa,D(s) =

Tr(|D + a|−s) does not admit a meromorphic extension to the entire complex plane. By

Theorem 3.6.4,

Tr(e−t|D+a|)

does not admit an asymptotic expansion of the type listed in the theorem.

We conclude by remarking that the existence of an asymptotic expansion of Tr(Pe−tD2
) for

P ∈ B of the type in Theorem 3.6.4 is guaranteed for commutative spectral triples [GS95,

Theorem 2.7], and by the same theorem also for almost commutative spectral triples [Sui25,

Chapter 10].
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Chapter 4

Connes’ integral formula and

quantum ergodicity

I am extremely impressed by your taste displayed in

the opening epigraphs to each chapter.

Fedor Sukochev

This chapter is based on [HM24b], joint work with Edward McDonald. Thanks are ex-

tended towards Nigel Higson for helpful comments and suggestions, and Magnus Goffeng

for pointing out the condition [D,A] being bounded is sufficient for Lemma 4.2.1. We

also acknowledge Eric Leichtnam, Qiaochu Ma, and Raphaël Ponge for their assistance.

The main results of this chapter are a formula for the noncommutative integral in Theo-

rem 4.1.7, a noncommutative Szegő formula in Theorem 4.2.2, and a link between NCG

and Quantum Ergodicity in Theorem 4.4.11.

For applications of NCG in physics and numerical computations in NCG, it is important to

know how well spectral triples can be approximated by a finite truncation, since this is all

we can measure physically or compute numerically. A physical detector in a measurement

for example is typically only effective in a certain energy range. Hence for a spectral triple
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(A, H,D) it makes sense to consider a spectral projection P = χI(D), and truncate the

triple into the form

(PAP ,PH,PD).

Now, PAP is not generally an algebra anymore. Connes and Van Suijlekom introduced

the concept of operator system spectral triples for this purpose [CS21], a generalisation of

usual spectral triples.

Definition 4.0.1. A unital operator system spectral triple (A, H,D) consists of a unital

space A of bounded operators on a Hilbert space H such that its norm closure is ∗-invariant,

D is a self-adjoint operator on H with compact resolvent, and for all T ∈ A we have that

T dom(D) ⊆ dom(D) and [D,T ] extends to a bounded operator.

Developments in this direction were made in [DLM14; GS20; GS21; CS22; DLL22; Hek22;

GS23; Rie23; LS24; Sui24a; Sui24b] amongst others.

We will connect this paradigm with Connes’ (normalised) noncommutative integral

a 7→ Trω(a⟨D⟩−d)

Trω(⟨D⟩−d)
, a ∈ B(H), (4.1)

recall that ⟨x⟩ := (1 + |x|2)
1
2 . Namely, we will show that given a finite-rank spectral

projection Pλ := χ[−λ,λ](D) where χ[−λ,λ] is the indicator function of the interval [−λ,λ] ⊆

R, the functional

PλaPλ 7→ Tr(PλaPλ)
Tr(Pλ)

, a ∈ B(H), (4.2)

approximates the noncommutative integral on spectrally truncated compact spectral triples

(Proposition 4.1.1, Theorem 4.1.7). This is a result in the spirit of [Ste19], where finite-

rank approximations of zeta residues are given. We however do not assume the existence

of a full asymptotic expansion of the heat trace. Instead, we focus our efforts on the

computation of the first term of this expansion, which is the noncommutative integral.

The language involved is closely tied to the field of quantum ergodicity, the inception of

which can largely be credited to Shnirelman, Zelditch and Colin de Verdière [Shn74; Col85;

Zel87]. For reviews of this field, see [Zel10; Zel17]. Quantum ergodicity is a property of an

102



operator which can mean various things. A common definition is that, given a compact

Riemannian manifold M and a positive self-adjoint operator ∆ on L2(M) with compact

resolvent, the operator ∆ is said to be quantum ergodic if for every orthonormal basis

{en}∞
n=0 of L2(M) consisting of eigenfunctions of ∆ there exists a density one subsequence

J ⊆ N such that for all zero-order pseudodifferential operators Op(σ) with principal

symbol σ ∈ C∞(S∗M ),

lim
J∋j→∞

⟨ej , Op(σ)ej⟩L2(M) =
∫
S∗M

σ dν,

and where ν is the measure on the cotangent sphere S∗M induced by the Riemannian

metric. In this context, a density one subsequence means that

#J ∩ {0, . . . ,n}
n+ 1 → 1, n → ∞.

Quantum ergodicity implies in particular that the functions |ej |2 become uniformly dis-

tributed over M as J ∋ j → ∞, in the sense that the measures |ej |2dνg converge to dνg
in the weak∗-topology, see Figure 4.1.

Although quantum ergodicity shares a philosophical link with NCG — emerging from a

functional-analytic approach to ergodic geodesic flow on compact Riemannian manifolds

— there has yet to be made an explicit connection between the two fields, despite their

contemporary development. We will show in Section 4.4 that our results on the noncom-

mutative integral on truncated spectral triples provide the means with which the gap can

be bridged.

We furthermore propose a straightforward noncommutative generalisation of the property

of ergodic geodesic flow on compact Riemannian manifolds for spectral triples, and explore

what some results from the field of quantum ergodicity provide in this context. Our

definition of ergodicity is known in the study of C∗-dynamical systems as uniqueness

of the vacuum state, and hence a result by Zelditch [Zel96] can now be recognised as an

NCG version of the classical result by Colin de Verdière that ergodicity of the geodesic flow

implies quantum ergodicity of the Laplace–Beltrami operator [Col85], see Theorem 4.4.11

below.
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Figure 4.1: An illustration of 64 eigenfunctions of the Laplacian on a rose-shaped do-
main with Dirichlet boundary conditions, corresponding to the 64 smallest eigenvalues
(counting multiplicities). Generated in Python with the finite-element method, using
FEniCSx [Bar+23]. Quantum ergodicity would imply that there exists a density one
subsequence of eigenfunctions {ej}j∈J along which the measures |ej |2dλ converge to the
uniform (Lebesgue) measure dλ in the weak∗-topology.

104



4.1. INTEGRATION ON TRUNCATED SPECTRAL TRIPLES

Additionally, we will draw from a result of Widom [Wid79] on the asymptotic behaviour of

the functional (4.2), which directly implies a Szegő limit formula for spectral triples that

satisfy the Weyl law (Theorem 4.2.2). This provides that for all self-adjoint A ∈ B(H)

which map dom |D| into itself and such that [D,A] is bounded,

Trω(⟨D⟩−d) · ω ◦M
(

Tr(f(PλnAPλn))

Tr(Pλn)

)
= Trω(f(A)⟨D⟩−d), f ∈ C(R), f(0) = 0.

Here, M : ℓ∞ → ℓ∞ is a logarithmic averaging operator, and ω ∈ ℓ∗∞ is an extended limit.

Details are provided in Section 4.2. Note that we use the short-hand notation ω ◦M(an)

for ω ◦ M({an}∞
n=1). We remark that this result provides the insight that Szegő limit

theorems can be interpreted as versions of Connes’ integral formula.

An outline of this chapter is as follows. We first explore and make precise the relation

between the functionals (4.1) and (4.2) in Section 4.1. Section 4.2 provides the mentioned

Szegő limit theorem for NCG. Next, we discuss a way of interpreting the functional (4.2)

when the noncommutative integral (4.1) is not defined, for example in θ-summable or Li1-

summable spectral triples. Namely, we relate the functional (4.2) to a functional that is

sometimes called the Fröhlich functional, which has been studied extensively in [GRU19]

as a KMS state. Finally, in Section 4.4 we exhibit our study in quantum ergodicity and

its relation to NCG through our results on the noncommutative integral.

4.1 Integration on truncated spectral triples

Let us fix a closed self-adjoint operator D on a separable Hilbert space H such that

⟨D⟩−d ∈ L1,∞, where d > 0 and ⟨x⟩ := (1 + |x|2)
1
2 . We fix an extended limit ω ∈ ℓ∗∞ and

assume that Trω(⟨D⟩−d) > 0. We write Pλ := χ[−λ,λ](D). This situation is modeled after

(compact) d-dimensional spectral triples (A, H,D).

We first provide the most straight-forward approach to the noncommutative integral

on truncated triples, using standard techniques that are employed in quantum ergod-

icity [Col85]. We write

f(t) ∼ Ct−α
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to mean

lim
t→0

tαf(t) = C.

Proposition 4.1.1. Let a ∈ B(H). If there exist constants C,C(a) ∈ R with

Tr(e−tD2
) ∼ Ct−

d
2 , Tr(ae−tD2

) ∼ C(a)t−
d
2 ,

then

Trω(a⟨D⟩−d) = Trω(⟨D⟩−d) lim
λ→∞

Tr(PλaPλ)
Tr(Pλ)

.

Proof. By [LSZ21, Corollary 8.1.3] we have that

C = Γ(
d

2 + 1)Trω(⟨D⟩−d), C(a) = Γ(
d

2 + 1)Trω(a⟨D⟩−d).

Recall that we assume Trω(⟨D⟩−d) > 0. An application of the Hardy–Littlewood Taube-

rian theorem [Fel71, Theorem XII.5.2] to the function Tr(e−tD2
) shows that

Tr(Pλ) ∼ Trω(⟨D⟩−d)λd, λ → ∞.

Applying the theorem again to the function Tr(ae−tD2
) then gives that limλ→∞

Tr(PλaPλ)
Tr(Pλ)

exists and is equal to Trω(a⟨D⟩−d)
Trω(⟨D⟩−d)

.

Remark 4.1.2. The Hardy-Littlewood Tauberian theorem implies that the condition

Tr(e−tD2
) ∼ Ct−

d
2 as t → 0 is equivalent to λ(k,D2) ∼ C̃k

2
d as k → ∞ [Fel71, Theo-

rem XII.5.2].

Definition 4.1.3. We say that D2 (as fixed at the start of this section) satisfies a Weyl

law if Tr(e−tD2
) ∼ Ct−

d
2 , and it satisfies a local Weyl law for an operator a ∈ B(H) if

Tr(ae−tD2
) ∼ C(a)t−

d
2 .

See [MSZ22] for an investigation of the validity of the (local) Weyl law for spectral triples,

and [Pon23] for an extensive study of Weyl’s law in relation to Connes’ integral formula.

The latter, work by Ponge, answers some questions regarding Weyl laws and the noncom-

mutative integral related to measurability of operators.
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Although the local Weyl laws hold for Riemannian manifolds and a wide class of spectral

triples [GS95; EI18; MSZ22], we have seen an example of a spectral triple in which such

behaviour does not hold in Chapter 3, see Example 3.6.5. In the remainder of this section

we show what can be deduced without this condition. We now fix an orthonormal basis

{en}∞
n=0 of eigenvectors of |D|, ordered such that the corresponding eigenvalues {λn}∞

n=0

are non-decreasing.

Lemma 4.1.4. Let A ∈ B(H). Then

Trω(A⟨D⟩−d) = ω

(
1

log(n+ 2)

n∑
k=0

⟨λk⟩−d⟨ek,Aek⟩
)

.

If D2 satisfies Weyl’s law, i.e. λk ∼ Ck
1
d , this simplifies to

Trω(A⟨D⟩−d) = Trω(⟨D⟩−d) · ω
(

1
log(n+ 2)

n∑
k=0

⟨ek,Aek⟩
k+ 1

)
.

Proof. The first part is [LSZ21, Corollary 7.1.4(c)], i.e. a corollary of Theorem 1.6.4, the

second claim is [LSZ21, Theorem 7.1.5(a)] or [LS11].

What appears in the lemma above is the logarithmic mean M : ℓ∞ → ℓ∞, defined by

M : x 7→
{

1
log(n+ 2)

n∑
k=0

xk
k+ 1

}∞

n=0
.

This can be compared with the Cesàro mean

C : x 7→
{

1
n+ 1

n∑
k=0

xk

}∞

n=0
.

Lemma 4.1.5. For any sequence x ∈ ℓ∞, we have

(M(x))n = (M ◦C(x))n + o(1), n → ∞.

Proof. For x ∈ ℓ∞ and k ≥ 0 we have

xk
k+ 1 =

(
1

k+ 1

k∑
l=0

xl

)
− k

k+ 1

(
1
k

k−1∑
l=0

xl

)

= (C(x))k − (C(x))k−1 +
1

k+ 1 (C(x))k−1.
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Hence, as n → ∞

(M (x))n =
1

log(n+ 2)

n∑
k=0

xk
k+ 1

=
1

log(n+ 2)

(
(C(x))n +

n∑
k=1

1
k+ 1 (C(x))k−1

)

= (M ◦ T ◦C(x))n + o(1),

where T : (x0,x1,x2, . . .) 7→ (0,x0,x1, . . .) is the right-shift operator on ℓ∞. Finally, for

any bounded sequence a ∈ ℓ∞, we have that

(M ◦ T (a))n − (M(a))n = o(1), n → ∞,

which can be found in [LSZ21, Lemma 6.2.12].

Since both M and C are regular transformations in Hardy’s terminology [Har49, Chap-

ter III], meaning that M(x)n → c whenever xn → c, it is a consequence of Lemma 4.1.5

that for x ∈ ℓ∞, if C(x)n → c then M(x)n → c as n → ∞. We introduce one more crucial

lemma. Namely, writing Qn for the projection onto {e0, . . . , en}, we want to switch freely

between
Tr(PλaPλ)

Tr(Pλ)
, Tr(QnaQn)

Tr(Qn)
.

The first can be written as Tr(QN(λ)aQN(λ))

Tr(QN(λ))
, where N(λ) is the greatest k ≥ 0 such that

λk ≤ λ, and thus can be interpreted as a subsequence of the second. The following lemma

can therefore be applied, which appeared as [Aza+22, Lemma 4.8], i.e. the published

version of Chapter 5, in a slightly weaker form and in a different context.

Lemma 4.1.6. Let ϕ : N → R>0 be an increasing function such that ϕ(n) → ∞ as

n → ∞, let {ak}k∈N ⊆ R be a sequence such that
{

1
ϕ(n)

∑n
k=0 |ak|

}∞

n=0
is bounded, and let

{k0, k1, . . . } be an infinite, increasing sequence of positive integers such that

lim
n→∞

ϕ(kn+1)

ϕ(kn)
= 1,

and
1

ϕ(kn)

kn∑
k=kn−1+1

|ak| = o(1), n → ∞.
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4.1. INTEGRATION ON TRUNCATED SPECTRAL TRIPLES

Labeling kin := min{ki : ki ≥ n}, we have that

1
ϕ(n)

n∑
k=0

ak =
1

ϕ(kin)

kin∑
k=0

ak + o(1), n → ∞.

Proof. Without loss of generality, we can assume that {ak}k∈N is a positive sequence. We

have

1
ϕ(n)

n∑
k=1

ak − 1
ϕ(kin)

kin∑
k=1

ak ≤
(

ϕ(kin)

ϕ(kin−1)
− 1

)
1

ϕ(kin)

kin∑
k=1

ak = o(1);

1
ϕ(kin)

kin∑
k=1

ak − 1
ϕ(n)

n∑
k=1

ak ≤ 1
ϕ(kin)

kin∑
k=kin−1+1

ak = o(1).

We can now prove the main result of this section.

Theorem 4.1.7. Let A ∈ B(H). If D2 satisfies Weyl’s law (Definition 4.1.3), then

Trω(A⟨D⟩−d)

Trω(⟨D⟩−d)
= (ω ◦M)

(
⟨en,Aen⟩

)
= (ω ◦M)

(
Tr(QnAQn)

Tr(Qn)

)
= (ω ◦M)

(
Tr(PλnAPλn)

Tr(Pλn)

)
.

If furthermore Q is an operator with
⋂
n≥0 dom(Dn) ⊆ domQ such that for some s ≥ −d,

Q⟨D⟩−s extends to a bounded operator, e.g. if Q ∈ ops(⟨D⟩), we have

Trω(Q) = ω

(
Tr(PλnQPλn)

log(Tr(Pλn))

)
, s = −d;

Trω(Q⟨D⟩−s−d)(
Trω(⟨D⟩−d)

) s
d
+1 =

(
s

d
+ 1

)
ω ◦M

(
Tr(PλnQPλn)

Tr(Pλn)
s
d
+1

)
, s > −d.

Proof. The first equality in the first equation appeared in Lemma 4.1.4, the second equality

is a consequence of Lemma 4.1.5 and the trivial identity

Tr(QnAQn)
Tr(Qn)

=
1

n+ 1

n∑
k=0

⟨ek,Aek⟩.

The last equality follows from Lemma 4.1.6 when taking ϕ(n) = n+ 1, since the Weyl law

gives that N(λn)
N(λn+1)

→ 1. The assumption

1
N(λn)

N(λn)∑
k=N(λn−1)+1

⟨ek,Aek⟩ = o(1), n → ∞
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in Lemma 4.1.6 is satisfied, since

1
N(λn)

N(λn)∑
k=N(λn−1)+1

|⟨ek,Aek⟩| ≤ ∥A∥∞
N(λn) −N(λn−1)

N(λn)
= o(1), n → ∞.

Now take an operator Q with ⋂
n≥0 dom(Dn) ⊆ domQ such that Q⟨D⟩−s extends to

a bounded operator. For s = −d, the given formula for Trω(Q) is a combination of

Lemma 4.1.4 and Lemma 4.1.6. For s ̸= −d, first, due to Weyl’s law

⟨λk⟩−s−d =
(

Trω(⟨D⟩−d)
) s

d
+1

(k+ 1)− s
d

−1 + o
(
(k+ 1)− s

d
−1
)
, k → ∞

and hence, since (k+ 1)− s
d ⟨ek,Qek⟩ is bounded, we have that

⟨λk⟩−s−d⟨ek,Qek⟩ =
(

Trω(⟨D⟩−d)
) s

d
+1

(k+ 1)− s
d

−1⟨ek,Qek⟩ + o
(
(k+ 1)−1

)
, k → ∞.

Now applying Lemma 4.1.4 and then Lemma 4.1.5,

Trω(Q⟨D⟩−s−d) = ω

(
1

log(n+ 2)
∑
k≤n

⟨λk⟩−s−d⟨ek,Qek⟩
)

=
(

Trω(⟨D⟩−d)
) s

d
+1
ω ◦M

(
(n+ 1)− s

d ⟨en,Qen⟩
)

=
(

Trω(⟨D⟩−d)
) s

d
+1
ω ◦M

(
1

n+ 1
∑
k≤n

(k+ 1)− s
d ⟨ek,Qek⟩

)
.

Using Abel’s summation formula, as n → ∞

1
n+ 1

∑
k≤n

(k+ 1)− s
d ⟨ek,Qek⟩ = (n+ 1)− s

d
−1 ∑

k≤n
⟨ek,Qek⟩

− 1
n+ 1

∑
k≤n−1

(
(k+ 2)− s

d − (k+ 1)− s
d

)∑
j≤k

⟨ej ,Qej⟩.

By Taylor’s formula, we have

(k+ 2)− s
d − (k+ 1)− s

d +
s

d
(k+ 1)− s

d
−1 =

s

d

(s
d
+ 1

) ∫ 1

0
(1 − θ)(k+ 1 + θ)− s

d
−2 dθ.

Therefore

1
n+ 1

∑
k≤n

(k+ 1)− s
d ⟨ek,Qek⟩

= (n+ 1)− s
d

−1 ∑
k≤n

⟨ek,Qek⟩ +
s

d
C
({

(k+ 1)− s
d

−1 ∑
j≤k

⟨ej ,Qej⟩
}∞

k=0

)
n

− s

d

(s
d
+ 1

) ∫ 1

0
(1 − θ)C

({
(k+ 1 + θ)− s

d
−2 ∑

j≤k
⟨ej ,Qej⟩

}∞

k=0

)
n
dθ,
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where C : ℓ∞ → ℓ∞ is the Cesàro operator. Since (j + 1)− s
d ⟨ej ,Qej⟩ is bounded and

s > −d we have ∣∣∣(k+ 1 + θ)− s
d

−2 ∑
j≤k

⟨ej ,Qej⟩
∣∣∣ = O((k+ 1)−1), k → ∞.

Thus

1
n+ 1

∑
k≤n

(k+ 1)− s
d ⟨ek,Qek⟩ = (n+ 1)− s

d
−1 ∑

k≤n
⟨ek,Qek⟩

+
s

d
C
({

(k+ 1)− s
d

−1 ∑
j≤k

⟨ej ,Qej⟩
}∞

k=0

)
n
+O

( log(n+ 2)
n+ 1

)
.

Using Lemma 4.1.5 again, we have

Trω(Q⟨D⟩−s−d) =
(

Trω(⟨D⟩−d)
) s

d
+1(

1 + s

d

)
ω ◦M

(
1

(n+ 1) s
d
+1

∑
k≤n

⟨ek,Qek⟩
)

.

To apply Lemma 4.1.6, taking ϕ(n) = (n+ 1) s
d
+1 and kn = N(λn), we need to check that

1
N(λn)

s
d
+1

N(λn)∑
k=N(λn−1)+1

|⟨ek,Qek⟩| ≲
1

N(λn)
s
d
+1

N(λn)∑
k=N(λn−1)+1

k
s
d

≲
N(λn)

s
d
+1 −N(λn−1)

s
d
+1

N(λn)
s
d
+1

= o(1), n → ∞.

Hence Lemma 4.1.6 applies, and we conclude that

Trω(Q⟨D⟩−s−d) =
(s
d
+ 1

)(
Trω(⟨D⟩−d)

) s
d
+1
ω ◦M

(
Tr(PλnQPλn)

Tr(Pλn)
s
d
+1

)
.

As an obvious consequence of Theorem 4.1.7, if for A ∈ B(H)

Tr(PλAPλ)
Tr(Pλ)

converges, it follows that, provided D2 satisfies Weyl’s law, the limit must necessarily

be the noncommutative integral of A. Furthermore, if the noncommutative integral is

independent of ω, meaning that A⟨D⟩−d is Dixmier measurable (see e.g. [LSZ21; LMSZ23;

Pon23]) one can replace ω ◦M by lim ◦M on the right hand sides of Theorem 4.1.7. Finally,

with a Weyl law, for self-adjoint A ∈ B(H) we have

lim inf
k→∞

⟨ek,Aek⟩ ≤ lim inf
λ→∞

Tr(PλAPλ)
Tr(Pλ)

≤ Trω(A⟨D⟩−d)

Trω(⟨D⟩−d)
≤ lim sup

λ→∞

Tr(PλAPλ)
Tr(Pλ)

≤ lim sup
k→∞

⟨ek,Aek⟩.
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All results achieved in this section are different flavours of the observation that the non-

commutative integral is the limit point — in a weak, averaging notion — of the sequence

{⟨ek,Aek⟩}∞
k=0. For the circle S1 this is not surprising; given f =

∑∞
k=−∞ akek ∈ L1(S1)

in Fourier basis, we have for every k ∈ Z

⟨ek,Mfek⟩ = a0 =
∫

S1
f(t) dt.

More generally, Proposition 4.1.1 combined with Connes’ integral formula (Theorem 1.4.3)

and Lemma 4.1.6 shows that for any d-dimensional closed Riemannian manifold M with

volume form νg we have that the Cesàro mean of the sequence

⟨ek,Mfek⟩, f ∈ C(M)

converges to
∫
M f dνg. This fact is precisely what started investigations into quantum er-

godicity. Recall that this covers the study of to what extent the matrix elements ⟨ek,Mfek⟩

themselves converge to an integral of f . More details will be provided in Section 4.4.

Previously, in [LPS10; LS11; LSZ21] it had already been observed that for spectral triples

(A, H,D) where D2 satisfies Weyl’s law that if the noncommutative integral

Trω(a⟨D⟩−d)

Trω(⟨D⟩−d)
, a ∈ A,

is independent of ω, then

1
log(n+ 2)

n∑
k=0

⟨ek, aek⟩
k+ 1 , a ∈ A,

converges as n → ∞, which was interpreted as being related to quantum ergodicity.

In quantum ergodicity and related fields, there is a vast literature on the properties and

asymptotics of the operators PλaPλ. Through the results established in this section, the

link with Connes’ integral formula unlocks this literature for study from the perspective of

noncommutative geometry. One result from this cross-pollination is a Szegő limit theorem

for truncated spectral triples.
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4.2 Szegő limit theorem

Szegő proved various limit theorems concerning determinants of Toeplitz matrices, inspired

by a conjecture by Pólya and after work on these determinants by Toeplitz, Caratheodory

and Fejér, see [Sze15] and references therein. Much later, Widom provided a generalisation

of these results with a simplified proof [Wid79], see also [LS96] for a version for elliptic

selfadjoint (pseudo)differential operators on manifolds without boundary. We now provide

a translation of the results of Widom into noncommutative geometry. We thank Magnus

Goffeng for pointing out that instead of requiring that [|D|,A] is bounded, it suffices to

assume in the following lemma that [D,A] is bounded.

Lemma 4.2.1 ([Wid79]). Let D2 satisfy Weyl’s law (Definition 4.1.3), and let A ∈ B(H)

and B ∈ B(H) map dom |D| into itself, and be such that [D,A] and [D,B] are bounded.

Then

lim
λ→∞

Tr(PλA(1 − Pλ)BPλ)

Tr(Pλ)
= 0.

Proof. First, [D,A] being bounded implies that [⟨D⟩
1
2 ,A] is bounded due to our results

in Chapter 3, namely Theorem 3.3.3 and Proposition 3.4.1 (alternatively, see [GVF01,

Lemma 10.13]). Hence, replacing D by ⟨D⟩
1
2 , we can assume that D is positive and that

[|D|,A] and [|D|,B] are bounded. Then, by the Cauchy-Schwarz inequality, an equivalent

formulation of the statement is that for every B such that [|D|,B] is bounded, we have

lim
λ→∞

∥PλB(1 − Pλ)∥2
HS

Tr(Pλ)
= 0,

where ∥ · ∥HS is the Hilbert–Schmidt norm. The following argument is essentially due to

Widom [Wid79], see also [Gui79, Lemma 3.4].

Let N > 0. A quick computation [Wid79, p. 145] shows that

∥PλB(1 − Pλ+N )∥2
HS ≤ N−2∥Pλ[|D|,B](1 − Pλ+N )∥2

HS .

By the triangle inequality, we have

∥PλB(1 − Pλ)∥2
HS ≤ 2∥PλB(Pλ+N − Pλ)∥2

HS + 2∥PλB(1 − Pλ+N )∥2
HS

≤ 2∥B∥2
∞ Tr(Pλ+N − Pλ) + 2N−2 Tr(Pλ)∥[|D|,B]∥2

∞.
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Weyl’s law implies that

Tr(Pλ+N − Pλ) = o(Tr(Pλ)), λ → ∞,

and hence

lim sup
λ→∞

∥PλB(1 − Pλ)∥2
HS

Tr(Pλ)
≤ 2N−2∥[|D|,B]∥2

∞.

Since N is arbitrary, this completes the proof.

Following Widom [Wid79] further, Lemma 4.2.1 can be combined with the characterisation

of Connes’ integral theorem in Theorem 4.1.7 into a Szegő limit theorem.

Theorem 4.2.2. Let D2 satisfy Weyl’s law (Definition 4.1.3), and let A ∈ B(H) be

self-adjoint and such that it maps dom |D| into itself and [D,A] is bounded. Then

Trω(⟨D⟩−d) · (ω ◦M)

(
Tr(f(PλnAPλn))

Tr(Pλn)

)
= Trω(f(A)⟨D⟩−d), f ∈ C(R), f(0) = 0.

If for every positive integer k there is some constant Ck ∈ R with

Tr(Ake−tD2
) ∼ Ckt

− d
2 ,

then for every f ∈ C(R) with f(0) = 0 we have

Trω(⟨D⟩−d) lim
λ→∞

Tr(f(PλAPλ))
Tr(Pλ)

= Trω(f(A)⟨D⟩−d).

Proof. We sketch the proof of the stronger identity

Trω(⟨D⟩−d) · (ω ◦M)

(
Tr(Pλnf(PλnAPλn)Pλn)

Tr(Pλn)

)
= Trω(f(A)⟨D⟩−d), f ∈ C(R).

(4.3)

Lemma 4.2.1 gives that

lim
λ→∞

Tr
(
PλA

kPλ − (PλAPλ)
k
)

Tr(Pλ)
= 0, k ≥ 1, (4.4)

which implies equation (4.3) for polynomial f through Theorem 4.1.7. An application of

the Stone–Weierstrass theorem provides an extension to continuous functions. Details can

be found in [Wid79].
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The second assertion for polynomial functions f is a combination of (4.4) and Proposi-

tion 4.1.1. If f is a continuous function on R with f(0) = 0, let ε > 0 and choose a

polynomial function p with p(0) = 0 such that

∥f − p∥L∞([−∥A∥∞,∥A∥∞]) < ε.

Then ∣∣∣∣Tr((f − p)(PλAPλ))

Tr(Pλ)

∣∣∣∣ < ε

and

| Trω((f − p)(A)⟨D⟩−d)| ≤ ε∥⟨D⟩−d∥1,∞.

Hence

lim sup
λ→∞

∣∣∣∣Trω(⟨D⟩−d)
Tr(f(PλAPλ))

Tr(Pλ)
− Trω(f(A)⟨D⟩−d)

∣∣∣∣ ≤ 2ε∥⟨D⟩−d∥1,∞.

Since ε is arbitrary, this implies the result.

We emphasise that Theorem 4.2.2 shows that the classical Szegő theorems for determinants

of Toeplitz matrices and Widom’s generalisations thereof can be interpreted as properties

of the noncommutative integral on spectral triples and their spectral truncations.

4.3 Fröhlich functional

So far, we have considered situations modeled after d-dimensional spectral triples, where

⟨D⟩−d ∈ L1,∞. There are many examples of spectral triples that do not satisfy this

condition, however. Instead, one could consider the property of θ-summability, which says

that Tr(e−tD2
) < ∞ for all t > 0, or Li1-summability which requires Tr(e−t|D|) < ∞ for t

large enough.

For this section, we therefore assume that D is a self-adjoint operator with compact

resolvent, but we do not assume Weyl laws. The functional

a 7→ lim
t→β

Tr(ae−t|D|)

Tr(e−t|D|)
, a ∈ B(H),

115



CHAPTER 4. CONNES’ INTEGRAL FORMULA AND QUANTUM ERGODICITY

which is sometimes called the Fröhlich functional after [FGR98; CFF93], has been studied

extensively in the literature [GM18; GRU19]. We highlight the relation between this

functional and the one that has been the object of study in this chapter.

Proposition 4.3.1. Assume there exists β ≥ 0 such that Tr(e−t|D|) < ∞ for t > β and

limt↘β Tr(e−t|D|) = ∞. Then, for any extended limit ω ∈ ℓ∗∞ there exists an extended

limit ω̂D,β ∈ ℓ∗∞ depending on D and β such that

ω

(
Tr(ae−(β+ 1

n
)|D|)

Tr(e−(β+ 1
n
)|D|)

)
= ω̂D,β

(
Tr(PλnaPλn)

Tr(Pλn)

)
, a ∈ B(H).

Furthermore,

lim
λ→∞

Tr(PλaPλ)
Tr(Pλ)

= lim
t→β

Tr(ae−t|D|)

Tr(e−t|D|)
, a ∈ B(H),

in the sense that if the LHS limit exists, then the RHS limit exists and the equality holds.

Proof. Write {rk}∞
k=0 for the eigenvalues of |D| counted without multiplicity so that r0 <

r1 < · · · . Observe the identity rk = λN(rk) where N(λ) := #{k : λk ≤ λ} is the spectral

counting function of |D| and {λn}∞
n=0 are the eigenvalues of |D| counted with multiplicity.

Then,

Tr(ae−(β+ 1
n
)|D|)

Tr(e−(β+ 1
n
)|D|)

=
1

Tr(e−(β+ 1
n
)|D|)

∞∑
k=0

( ∑
λj=rk

⟨ej , aej⟩
)
e−(β+ 1

n
)rk

=
1

Tr(e−(β+ 1
n
)|D|)

∞∑
k=0

(
Tr(Prk

)
Tr(Prk

aPrk
)

Tr(Prk
)

− Tr(Prk−1)
Tr(Prk−1aPrk−1)

Tr(Prk−1)

)
e−(β+ 1

n
)rk .

Hence if we define ω̂D,β ∈ (ℓ∞)∗ by

ω̂D,β(bn) := ω

(
1

Tr(e−(β+ 1
n
)|D|)

∞∑
k=0

(
Tr(Prk

)bN(rk) −Tr(Prk−1)bN(rk−1)

)
e−(β+ 1

n
)rk

)
, b ∈ ℓ∞,

we have by construction that

ω

(
Tr(ae−(β+ 1

n
)|D|)

Tr(e−(β+ 1
n
)|D|)

)
= ω̂D,β

(
Tr(PλnaPλn)

Tr(Pλn)

)
, a ∈ B(H).

Crucially, ω̂D,β is an extended limit if and only if limt↘β Tr(e−t|D|) = ∞, see [Har49,

Theorem III.2]. The second assertion of the proposition is proved through the continuous

version of the cited theorem, namely [Har49, Theorem III.5].
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Finally, if the limit

lim
λ→∞

Tr(PλaPλ)
Tr(Pλ)

exists, then all extended limits on the sequence Tr(PλnaPλn )
Tr(Pλn ) coincide, and so we conclude

lim
λ→∞

Tr(PλaPλ)
Tr(Pλ)

= lim
t→β

Tr(ae−t|D|)

Tr(e−t|D|)
, a ∈ B(H).

Writing PD := χ[0,∞) and applying the above results to PDD instead of D, we have that

ω

(
Tr(PDae−(β+ 1

n
)D)

Tr(PDe−(β+ 1
n
)D)

)
= ω̂D,β

(
Tr(χ[0,λn](D)aχ[0,λn](D))

Tr(χ[0,λn](D))

)
, a ∈ B(H),

which is a functional that is extensively studied in [GRU19]. In particular, it defines a

KMS state of inverse temperature β on the Toeplitz algebra generated by a Li1-summable

spectral triple (A, H,D) satisfying some extra conditions.

4.4 Noncommutative ergodicity

Quantum ergodicity began as a study of geodesic flow on manifolds through abstract

operator theoretical language. On a closed Riemannian manifold (M , g) we can define

the geodesic flow as a map Gt : SM → SM , where SM is the unit sphere in the tangent

bundle of the manifold M . For a point (x, v) ∈ SM , one simply takes the unique geodesic

γ : R → M with γ(0) = x and γ′(0) = v, and defines Gt(x, v) := (γ(t), γ′(t)). This

flow is said to be ergodic if every measurable function f ∈ L∞(SM) which is fixed by the

flow (i.e. f ◦Gt = f almost everywhere) is constant almost everywhere. Equivalently, the

geodesic flow can be defined on S∗M , the unit sphere in the cotangent bundle.

Let {ek}∞
k=0 be any orthonormal basis of eigenvectors of the Laplace–Beltrami operator

∆g and let Pλ := χ[0,λ](−∆g). Related to the result derived in Section 4.1, it is known

that for compact Riemannian manifolds we have that

Tr(PλOp(a)Pλ)
Tr(Pλ)

→
∫
S∗M

a dν,
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where a ∈ C∞(S∗M) and Op(a) is a classical pseudodifferential operator with principal

symbol a. Colin de Verdière showed [Col85] that this fact can be used, if M has ergodic

geodesic flow, to show that there exists a density one subsequence {ej}j∈J of {ek}∞
k=0,

meaning that #(J∩{0,...,n})
n+1 → 1, such that

lim
J∋j→∞

⟨ej , Op(a)ej⟩ =
∫
S∗M

a dν.

This and related properties are called quantum ergodicity of the operator ∆g. See also

Figure 4.1.

Before we start to put quantum ergodicity results into a noncommutative geometrical

context, let us observe first that our labours in Section 4.1 provide a result in the other

direction. The Weyl measure of an operator, which is the relevant measure for quantum

ergodicity [CHT18, Section 4], clearly admits a Dixmier trace formula.

Definition 4.4.1. Let M be a manifold equipped with a nonvanishing density ρ, and let

∆ be a self-adjoint positive operator on L2(M , ρ) with compact resolvent. Let {ek}∞
k=0

be an orthonormal basis of L2(M , ρ) consisting of eigenvectors of ∆ with corresponding

eigenvalues {λk}∞
k=0. If

lim
λ→∞

1
N(λ)

∑
λk≤λ

⟨ek,Mfek⟩

exists for all f ∈ Cc(M), then there exists a measure µ∆ such that

lim
λ→∞

1
N(λ)

∑
λk≤λ

⟨ek,Mfek⟩ =
∫
M
f dµ∆.

This measure is called the local Weyl measure of ∆.

Proposition 4.4.2. If ∆ as in Definition 4.4.1 satisfies Weyl’s law

λ(k, ∆) ∼ Ck
2
d

for some 0 < d ∈ R and admits a local Weyl measure µ∆, then

Trω(Mf (1 + ∆)− d
2 ) = Trω((1 + ∆)− d

2 )
∫
M
f dµ∆. (4.5)

Proof. Consequence of Theorem 4.1.7.
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This is relevant for sub-Riemannian manifolds, in which case one can take ∆ to be the sub-

Laplacian and µ∆ is not necessarily the usual volume form on the manifold M . Notably,

a rescaling of this measure was found very recently in [KSZ24b] to be a spectrally correct

sub-Riemannian volume of M , additionally providing in that context a generalisation of

the above Dixmier trace formula to any normalised continuous trace ϕ. This measure is

studied extensively in this context in [CHT18] as well.

We will now shift our attention to results in quantum ergodicity which are interesting

when viewed from the perspective of noncommutative geometry. To start, we provide an

analogue of ergodicity of the geodesic flow – a property a compact Riemannian manifold

can have, which we should therefore be able to see as a property of a spectral triple. For

this purpose we recall the following construction and theorem by Connes [Con95]. For

a spectral triple (A, H,D) we write Ψ0 for the set of operators admitting an asymptotic

expansion

P = b0 + b−1⟨D⟩−1 + b−2⟨D⟩−2 + · · · , bj ∈ B,

with B generated by A and δn(A), where δ(a) := [|D|, a]. The asymptotic expansion is

taken in the sense of Chapters 2 and 3, which means here that the difference between P

and the nth partial summand is an element of op−n(⟨D⟩). Note that we do not include

the operators [D, A] in B. For A ∈ B(H), we write σt(A) := eit|D|Ae−it|D|, t ∈ R.

Theorem 4.4.3. For a unital regular spectral triple (A, H,D), where regular means that

δn(a) ∈ B(H) for all a ∈ A, n ∈ N, define

S∗A := C∗
( ⋃
t∈R

σt
(

Ψ0
)
+K(H)

)/
K(H).

This C∗-algebra comes equipped with automorphisms

σt(A+K(H)) := eit|D|Ae−it|D| +K(H).

For (A, H,D) ≃ (C∞(M),L2(S),DM ), the Dirac spectral triple associated with a compact

Riemannian spin manifold, we have S∗A ≃ C(S∗M). Furthermore, if A = OpF (σ) ∈ Ψ0

for σ ∈ C∞(S∗M) we have σt(A+K(H)) = OpF (σ ◦Gt)+K(H) where Gt is the geodesic

flow on S∗M .
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The identity σt(OpF (σ)) = OpF (σ ◦ Gt) + K(H) is known as Egorov’s theorem, see

e.g. [Zel17, Section 9.2][Zwo12, Section 11.1]. This provides the basis for interpreting σt
as an analogue of geodesic flow even in the noncommutative case.

In Theorem 4.4.3, it is important that the operators [D, A] are not included in Ψ0. For

illustration, in the commutative case the principal symbol of |D| acts as a scalar on the

vector bundle S, meaning that B and hence Ψ0 can be regarded as acting on L2(M) instead

of L2(S). The isomorphism S∗C∞(M) ∼= C(S∗M) in Theorem 4.4.3 is then an extension

of the symbol map σ : Ψ0
cl → C∞(S∗M) on classical pseudodifferential operators on M .

Remark 4.4.4. For a (unital) spectral triple, ⟨D⟩−1 is compact and hence

S∗A = C∗
( ⋃
t∈R

σt(B) +K(H)

)/
K(H).

Furthermore, since for b ∈ B we have the convergence in norm

lim
t→0

σt(b) − b

t
= [|D|, b],

we in fact have

S∗A = C∗
( ⋃
t∈R

σt(A) +K(H)

)/
K(H).

A few examples of this construction are given in [GL98]. In the context of foliations of

manifolds, it has been covered in [Kor05].

The automorphisms σt provide an action of R on the C∗-algebra S∗A, and this noncom-

mutative cotangent sphere is thus an example of a C∗-dynamical system.

Definition 4.4.5. A C∗-dynamical system (A,G,α) consists of a C∗-algebra A, a locally

compact group G, and a strongly continuous representation α : G → Aut(A).

There is a vast literature on C∗-dynamical systems, see [BR87, Section 2.7] for a start.

In particular it has been a popular object of study in the field of quantum ergodicity, see

e.g. [Zel96].

In Connes’s point of view, the automorphisms σt on S∗A are the noncommutative analogue

of geodesic flow. Recall that for compact manifolds this flow is said to be ergodic if the
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only measurable functions that are invariant almost everywhere under the geodesic flow

are the functions that are constant almost everywhere. This definition is measure-theoretic

in nature, and to translate it into a statement on spectral triples we therefore define the

noncommutative L2-space on S∗A, which corresponds with L2(S∗M ) in the commutative

case.

Proposition 4.4.6. Let (A, H,D) be a unital regular spectral triple where D2 satisfies

Weyl’s law (Definition 4.1.3). The functional

τ (A+K(H)) :=
Trω(A⟨D⟩−d)

Trω(⟨D⟩−d)
,

defines a finite positive trace on S∗A.

Proof. This is well-known. We remark that the traciality of τ in fact follows from Theo-

rem 4.1.7, Widom’s Lemma 4.2.1, and the trivial identity

Tr(PλAPλBPλ) = Tr(PλBPλAPλ).

Definition 4.4.7. We define L2(S∗A) as the Hilbert space Hτ in the GNS construction

(πτ , Hτ ). Explicitly, writing I = {A+K(H) ∈ S∗A : τ (A∗A) = 0}, we define

L2(S
∗A) := S∗A/I

∥·∥L2 ,

where the completion is taken in the semi-norm ∥A + I∥L2 =
(
τ (A∗A)

) 1
2 . The space

L2(S∗A) is a Hilbert space with inner product defined via

⟨A+ I,B + I⟩L2 := τ (B∗A), A,B ∈ S∗A.

Notation 4.4.8. In accordance with the paradigm called the C∗-algebraic approach to the

principal symbol [Cor79; SZ18; MSZ19; KSZ24a], we write sym for the quotient map

sym : C∗
( ⋃
t∈R

σt(A) +K(H)

)
→ S∗A

A 7→ A+K(H),
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which is understood as a symbol map. Writing furthermore π for the other quotient map-

ping

π : S∗A → L2(S
∗A)

A 7→ A+ I,

where I is as in Definition 4.4.7, we will furthermore use the notation

symL2 := π ◦ sym : C∗
( ⋃
t∈R

σt
(
A
)
+K(H)

)
→ L2(S

∗A).

Example 4.4.9. 1. For the Dirac spectral triple coming from a compact Riemannian

spin manifold, (C∞(M ),L2(S),DM ), we have that S∗C∞(M) ≃ C(S∗M) with

τS∗A =
∫
S∗M . Hence L2(S∗C∞(M)) ≃ L2(S∗M). The action σt agrees with the

usual geodesic flow.

2. Given an even dimensional compact Riemannian manifold, and a finite dimensional

spectral triple (AF , HF ,DF ), we have for the almost commutative manifold (see

Section 1.6)

(A := C∞(M) ⊗ AF ,L2(S) ⊗ HF ,D := DM ⊗ 1 + γM ⊗DF ),

that S∗A ≃ C(S∗M ) ⊗ AF with τS∗A =
∫
S∗M ⊗ Tr. Hence L2(S∗A) ≃ L2(S∗M ) ⊗

HSF , where HSF is simply AF equipped with the Hilbert–Schmidt norm. The au-

tomorphisms σt act as σMt ⊗ 1, where σMt is the usual geodesic flow on S∗M . This

corrects [GL98, Lemma 2.2].

3. For the noncommutative torus (C∞(Td
θ),L2(Td

θ) ⊗ CNd ,D) (see Section 1.6), we

have that S∗C(Td
θ) ≃ C(Td

θ)⊗C(Sd−1) with τS∗Td
θ
= τTd

θ
⊗
∫

Sd−1 and ⊗ is the mini-

mal C∗-tensor product. Hence L2(S∗Td
θ) ≃ L2(Td

θ)⊗L2(Sd−1). The automorphisms

σt act as

σt(uk ⊗ g) = uk ⊗ exp(it k · x)g, t ∈ R, k ∈ Zd,x ∈ Sd−1 ⊆ Rd, g ∈ C(Sd−1).

4. Let A be the Toeplitz algebra, i.e. the C∗-algebra generated by the shift operator on

ℓ2(N), and let D be the operator on ℓ2(N) defined on the standard basis {ej}j∈N

D : ej 7→ jej , j ∈ N.
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For the spectral triple (A, ℓ2(N),D), we have S∗A ≃ C(S1) with τS∗A =
∫

S1. Hence

L2(S∗A) ≃ L2(S1). The automorphism σt is given by rotation.

Proof. (1) can be found in [Con95].

(2): Since |D| =
√
D2
M ⊗ 1 + 1 ⊗D2

F , it follows that |D| − |DM | ⊗ 1 is a compact operator

on L2(S) ⊗ HF . We will show this with the double operator integrals from Chapter 3.

First, one can omit the kernels of |D| and |DM | ⊗ 1 from the Hilbert space as the projection

onto the kernel of either operator is finite-rank and thus compact. Both operators have

compact resolvent. Hence, after this modification, the function f(x) =
√
x is smooth on

a neighbourhood of the spectra of the operators |D| and |DM | ⊗ 1. Define the Sobolev

spaces Hs := dom |DM |s ⊗ 1, s ∈ R, and apply Proposition 3.4.1 and Theorem 3.3.3 to

find that, for 0 < ε < 1,

|D| − |DM | ⊗ 1 = T
D2,D2

M ⊗1
f [1]

(1 ⊗D2
F ) ∈ op−1+ε(|DM | ⊗ 1) ⊆ K(H),

It now follows from Duhamel’s formula (see e.g. [ACDS09, Lemma 5.2]) that

eit|D| − eit(|DM |⊗1) = it

∫ 1

0
eist|D|(|D| − |DM | ⊗ 1)ei(1−s)t(|DM |⊗1) ds ∈ K(H).

Therefore, ⋃
t∈R

σt(B) +K(H) =
⋃
t∈R

σMt (BM ) ⊗ AF +K(H),

where σMt is the geodesic flow on M and BM the algebra generated by δn|DM |(C
∞(M)) ⊆

B(L2(M)). We conclude that S∗A ≃ C(S∗M) ⊗ AF . This proof shows that the action

σt on C(S∗M) ⊗ AF is given by σt = σMt ⊗ 1.

(3): Although the Hilbert space of the spectral triple is L2(Td
θ)⊗ CNd , since |D| =

√
−∆ ⊗

1 (see Section 1.6) similarly to the manifold case B acts trivially on the CNd-component.

We can therefore make the identification B ⊆ B(L2(Td
θ)). In fact, we claim that B∥·∥ is a

C∗-algebra stable under the action σt(·) = eit
√

−∆(·)e−it
√

−∆, and therefore

S∗C(Td
θ) ≃ (B∥·∥

+K(L2(T
d
θ)))/K(L2(T

d
θ)).

The claim holds since formally σt(a) =
∑∞
k=0

(it)k

k! δ
k(a), and this sum is actually norm

convergent for a ∈ Poly(Td
θ) := span{un}n∈Zd . Denoting the generated ∗-algebra Bpoly :=
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⟨a, δn(a)⟩a∈Poly(Td
θ
) we therefore have

σt : Bpoly → B∥·∥.

Since Poly(Td
θ) is dense in C∞(Td

θ) and σt is an isometry on B(L2(Td
θ)), it is easily seen

that this implies that σt maps B∥·∥ into itself.

By construction C(Td
θ) is represented on L2(Td

θ) as bounded left-multiplication operators

(denote the representation π1), and C(Sd−1) is as well via the representation

π2(g) = g
( D1√

−∆
, . . . , Dd√

−∆

)
, g ∈ C(Sd−1),

where Di : uk 7→ kiuk. It is shown in [MSZ19] that, writing Π(C(Td
θ),C(Sd−1)) for the

C∗ -algebra generated by π1(C(Td
θ)) and π2(C(Sd−1)) inside B(L2(Td

θ)), we have

Π(C(Td
θ),C(Sd−1))/K(L2(T

d
θ)) ≃ C(Td

θ) ⊗C(Sd−1).

To determine that S∗Td
θ ≃ C(Td

θ) ⊗C(Sd−1), it therefore suffices to show that

B∥·∥
+K(L2(T

d
θ)) = Π(C(Td

θ),C(Sd−1)) +K(L2(T
d
θ)) ⊆ B(L2(T

d
θ)).

To start, it is immediately obvious that π1(C(Td
θ)) ⊆ B∥·∥. Next, the operators Di√

−∆

generate π2(C(Sd−1)) as a C∗-algebra, and we claim that

u∗
ej
[
√

−∆,uej ] − Dj√
−∆

∈ K(L2(T
d
θ)),

where ej ∈ Zd is the standard unit vector. This would imply

Π(C(Td
θ),C(Sd−1)) +K(L2(T

d
θ)) ⊆ B∥·∥

+K(L2(T
d
θ)).

The claim is proven by writing(
u∗
ej
[
√

−∆,uej ] − Dj√
−∆

)
uk =

(
|k+ ej | − |k| − kj

|k|

)
uk.

Now define

f(t, k) := |k+ tej |, k ∈ Zd, t ∈ R,

and note that its derivatives in the t variable are

f ′(t, k) = kj + t

|k+ tej |
, f ′′(t, k) = |k+ tej |2 − (kj + t)2

|k+ tej |3
.
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Hence (
u∗
ej
[
√

−∆,uej ] − Dj√
−∆

)
uk = (f(1, k) − f(0, k) − f ′(0, k))uk

=
∫ 1

0
(1 − t)f ′′(t, k) dt · uk.

From the form of f ′′(t, k) above, we therefore have

|f(1, k) − f(0, k) − f ′(0, k)| ∈ c0(Z
d),

which indeed shows that u∗
ej
[
√

−∆,uej ] − Dj√
−∆

is a compact operator.

For the other direction, the above arguments already show that

[
√

−∆,uej ] ∈ Π(C(Td
θ),C(Sd−1)) +K(L2(T

d
θ)).

Since by explicit computation

u∗
ej
δn√−∆(uej ) = (u∗

ej
[
√

−∆,uej ])
n,

and since umej
= umej , we have that

δn√−∆(uk) ∈ Π(C(Td
θ),C(Sd−1)) +K(L2(T

d
θ)), n ∈ Z≥0, k ∈ Zd,

and hence

B∥·∥ ⊆ Π(C(Td
θ),C(Sd−1)) +K(L2(T

d
θ)).

In conclusion, S∗Td
θ ≃ C(Td

θ) ⊗C(Sd−1). For the automorphism σt, first note that

σt(g(
D1√
−∆

, . . . , Dd√
−∆

)) = g(
D1√
−∆

, . . . , Dd√
−∆

), g ∈ C(Sd−1).

Next,

eit
√

−∆ueje
−it

√
−∆uk = eit(|k+ej |−|k|)uejuk

= uej exp(itu∗
ej
[
√

−∆,uej ])uk

= uej exp
(
it

Dj√
−∆

)
uk + uej

(
exp(itu∗

ej
[
√

−∆,uej ]) − exp
(
it

Dj√
−∆

))
uk.
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We have already seen that u∗
ej
[
√

−∆,uej ] − Dj√
−∆

∈ K(L2(Td
θ)), and hence as in the proof

of (2) it follows from Duhamel’s formula that

exp(itu∗
ej
[
√

−∆,uej ]) − exp
(
it

Dj√
−∆

)
∈ K(L2(T

d
θ)).

Thus, we see that

σt(un ⊗ g) = un ⊗ exp(it n · x)g, t ∈ R,n ∈ Zd,x ∈ Sd−1 ⊆ Rd, g ∈ C(Sd−1).

(4): It is well-known that, after identifying ℓ2(N) with the Hardy space H2, any element

in the Toeplitz algebra A can be written as Tϕ +K, where Tϕ is the Toeplitz operator

with symbol ϕ ∈ C(S1) and K ∈ K(ℓ2(N)), see e.g. [Mur90, Section 3.5]. By an explicit

computation, it can be seen that

eit|D|Tϕe
−it|D| = Tϕ◦Rt ,

where Rt is rotation by the angle t. Hence σt(A) = A, and

S∗A = A/K(ℓ2(N)) ≃ C(S1).

For the noncommutative integral, we can use the diagonal formula in Theorem 4.1.7, so

that for an arbitrary element Tϕ +K ∈ A,

Trω((Tϕ +K)⟨D⟩−1) = ω ◦M(⟨ek, (Tϕ +K)ek⟩) =
∫

S1
ϕ(t) dt.

Observe that the automorphism σt on S∗A extends to a unitary operator σt ∈ B(L2(S∗A)).

Definition 4.4.10. We say that (A, H,D) is classically ergodic if for a ∈ L2(S∗A), we

have σt(a) = a for all t ∈ R if and only if a = λ · 1 ∈ L2(S∗A) for some λ ∈ C.

The construction of L2(S∗A) has now reached its goal; for spectral triples derived from

compact Riemannian manifolds, this definition is precisely the usual definition of ergodicity

of the geodesic flow.

We now immediately claim the following theorem, the NCG analogue of the classic result

in quantum ergodicity by Shnirelman, Zelditch, and Colin de Verdière [Shn74; Col85;

Zel87].
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Theorem 4.4.11. Let (A, H,D) be a unital regular spectral triple with local Weyl laws

for a ∈ A (Definition 4.1.3). Assume that the closure of A in B(H) is separable. If the

triple is classically ergodic, then for every basis {en}∞
n=0 of eigenvectors of |D| there exists

a density one subset J ⊆ N such that

lim
J∋j→∞

⟨ej , aej⟩ =
Trω(a⟨D⟩−d)

Trω(⟨D⟩−d)
, a ∈ A.

Proof. Classical ergodicity of (A, H,D) means precisely that the C∗-dynamical system

(S∗A, R,σt) has a unique vacuum state in the terminology of [Zel96]. Hence, due to

Proposition 4.1.1, the theorem is a consequence of [Zel96, Lemma 2.1].

This theorem, while its mathematical core is already an established result in quantum

ergodicity, gives a fresh perspective on the criterion of a C∗-dynamical system having a

‘unique vacuum state’. And while the vast majority of results in the paper [Zel96] are for-

mulated for ‘quantised abelian’ C∗-dynamical systems, which in our case would mean S∗A

is represented as a commutative algebra on L2(S∗A), the philosophy of noncommutative

geometry provides solid reason to study not quantised abelian C∗-dynamical systems but

ones with a unique vacuum state, as proposed by Zelditch [Zel96].

Example 4.4.12. We continue Example 4.4.9.

1. The canonical spectral triple corresponding to a compact Riemannian spin manifold,

(C∞(M),L2(S),DM ) is classically ergodic if and only if M has ergodic geodesic

flow.

2. Any nontrivial almost commutative manifold (C∞(M )⊗ AF ,L2(S)⊗ HF ,DM ⊗ 1+

γM ⊗DF ) is not classically ergodic. Note that this corrects [Zel96, Corollary (3.1)],

which was already known to experts to be false.

3. The noncommutative torus, like the commutative torus, is not classically ergodic.

4. The spectral triple of the Toeplitz algebra is classically ergodic. See [Zel96, Exam-

ple (D)] for a generalisation.
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Proof. (1): See [Col85].

(2): Since σt acts on L2(S) ⊗HSF by σMt ⊗ 1, any element of the form 1 ⊗ a is a fixed

point of σt.

(3): It follows from Example 4.4.9 that for any f ∈ C(Sd−1), the element symL2(1 ⊗ f) ∈

L2(S∗Td
θ) is a fixed point of σt.

(4): Since the only rotationally invariant functions in L2(S1) are the constant functions,

the claim follows.

We note that the well-studied examples of spectral triples in noncommutative geometry

often possess a high degree of symmetry, and in geometric examples a high degree of

symmetry can obstruct ergodicity.

We now conclude the paper by giving some equivalent conditions for classical ergodicity.

First, we invoke von Neumann’s mean ergodic theorem.

Proposition 4.4.13. For any a ∈ L2(S∗A), there exists aavg ∈ L2(S∗A) such that,

putting

aT :=
1
T

∫ T

0
σt(a) dt,

we have

lim
T→∞

∥aT − aavg∥L2 → 0.

Furthermore,

⟨1, aavg⟩L2 = ⟨1, a⟩L2 ,

and the map a 7→ aavg is L2-continuous.

Proof. The existence of aavg and the L2-convergence of aT to aavg follows from von Neu-

mann’s mean ergodic theorem. Next, since σt is a unitary operator with σt(1) = 1, we

have

⟨1,σt(a)⟩L2 = ⟨1, a⟩L2 .

128



4.4. NONCOMMUTATIVE ERGODICITY

Hence,

∣∣∣⟨1, aavg⟩L2 − ⟨1, a⟩L2

∣∣∣ ≤
∣∣∣⟨1, aavg⟩L2 − ⟨1, aT ⟩L2

∣∣∣+ ∣∣∣⟨1, aT ⟩L2 − ⟨1, a⟩L2

∣∣∣︸ ︷︷ ︸
=0= |⟨1, aavg − aT ⟩L2 |

≤ ∥aT − aavg∥L2 ,

which converges to 0 as T → ∞ due to the first part.

Finally, for the continuity of a 7→ aavg, note that

∥aT ∥L2 ≤ 1
T

∫ T

0
∥σt(a)∥L2 dt = ∥a∥L2 ,

and taking the limit T → ∞,

∥aavg∥L2 ≤ ∥a∥L2 .

Remark 4.4.14. Since S∗A is represented as bounded operators on L2(S∗A), we can

consider the von Neumann algebra πτ (S∗A)′′ in B(L2(S∗A)), denoted as L∞(S∗A), to

which τ extends as a faithful normal tracial state. We can define the noncommutative Lp
spaces Lp(S∗A) := Lp(τ ) for 1 ≤ p ≤ ∞ via standard constructions (we recover L2(S∗A)

for p = 2). This is precisely how the spaces Lp(Td
θ) are constructed [LMSZ23, Section 3.5].

It is possible to show that σt : Lp(S∗A) → Lp(S∗A) are isometries for all 1 ≤ p ≤ ∞, and

the averages in Proposition 4.4.13 exist and converge in every Lp(S∗A).

Proposition 4.4.15. Given a unital regular spectral triple (A, H,D) satisfying Weyl’s

law, the following are equivalent:

1. the spectral triple is classically ergodic;

2. for all a ∈ L2(S∗A),

aavg = ⟨1, a⟩L2 · 1;

3. writing

AT :=
1
T

∫ T

0
σt(A) dt, A ∈

〈 ⋃
t∈R

σt(A)
〉
,
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where
〈⋃

t∈R σt(A)
〉

is the ∗-algebra generated by
⋃
t∈R σt(A), for all A ∈

〈⋃
t∈R σt(A)

〉
we have

Trω(⟨D⟩−d)2 · lim
T→∞

ω ◦M
(

⟨ek, |AT |2ek⟩
)
=

∣∣∣∣Trω(A⟨D⟩−d)

∣∣∣∣2.

Proof. (1) ⇔ (2) is easily seen from the fact that aavg is a fixed point of σt.

Next, if A ∈
〈⋃

t∈R σt(A)
〉
, then by Theorem 4.1.7 it follows that

Trω(⟨D⟩−d)2 · ω ◦M
(

⟨ek, |AT |2ek⟩
)
= Trω(⟨D⟩−d)Trω(|AT |2⟨D⟩−d)

= Trω(⟨D⟩−d)2⟨symL2(AT ), symL2(AT )⟩L2 .

Since symL2(AT ) = symL2(A)T , Proposition 4.4.13 gives that

Trω(⟨D⟩−d)2 · lim
T→∞

ω ◦M
(

⟨ek, |AT |2ek⟩
)
= Trω(⟨D⟩−d)2⟨symL2(A)avg, symL2(A)avg⟩L2 .

(4.6)

(2) ⇒ (3): This now follows from Equation (4.6) and the identity ⟨1, symL2(A)⟩L2 =

Trω(A⟨D⟩−d)
Trω(⟨D⟩−d)

.

(3) ⇒ (2): For a ∈ L2(S∗A), Proposition 4.4.13 gives that ⟨aavg, 1⟩L2 = ⟨a, 1⟩L2 , and

hence

∥aavg − ⟨1, a⟩ · 1∥2
L2 = ⟨aavg, aavg⟩L2 − ⟨aavg, 1⟩L2⟨1, a⟩L2 − ⟨1, aavg⟩L2⟨1, a⟩L2 + |⟨1, a⟩L2 |2

= ⟨aavg, aavg⟩L2 − |⟨1, a⟩L2 |2.

Therefore, assumption (3) combined with Equation (4.6) gives for all A ∈
〈⋃

t∈R σt(A)
〉
,

symL2(A)avg = ⟨1, symL2(A)⟩L2 · 1.

The image of
〈⋃

t∈R σt(A)
〉

under the map symL2 being dense in L2(S∗A), and the map

a → aavg being L2-continuous, we can conclude that

aavg = ⟨1, a⟩L2 · 1

for all a ∈ L2(S∗A).
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Chapter 5

The density of states on discrete

spaces

Best wishes and remember: WORK HARDER!!!

Fedor Sukochev

This chapter is an adaptation of [Aza+22], joint work with Nurulla Azamov, Edward

McDonald, Fedor Sukochev, and Dmitriy Zanin. The main result in this chapter is a

Dixmier trace formula for the density of states on discrete metric spaces, Theorem 5.0.1.

Given a metric space (X, d) with a Borel measure, and a self-adjoint operator H on L2(X),

a Dixmier trace formula for the density of states is an equality of two Borel measures on

R that can be associated with H. On the one hand, we can fix a weight w : X → C

such that Mw ∈ L1,∞, which implies that f(H)Mw ∈ L1,∞ for all f ∈ Cc(R), inducing a

measure

Trω(f(H)Mw) =
∫

R
f dν1, f ∈ Cc(R), (5.1)

where ω ∈ ℓ∗∞ is an extended limit. This measure ν1 is guaranteed to exist due to the

Riesz–Markov–Kakutani theorem, and a priori it might depend on our choice of ω. On
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CHAPTER 5. THE DENSITY OF STATES ON DISCRETE SPACES

the other hand, we can look more geometrically towards the measure based on the limits

lim
R→∞

1
|B(x0,R)| Tr(f(H)MχB(x0,R)

) =
∫

R
f dν2, f ∈ Cc(R), (5.2)

where x0 ∈ X is some chosen basepoint and |B(x0,R)| is the measure of the closed ball

B(x0,R). For the definition of this measure to make sense we must require that the

volume of the balls B(x0,R) is finite for all R > 0 and that f(H)MχB(x0,R)
∈ L1, but even

then the limits in equation (5.2) are not guaranteed to exist. If the limits do converge, we

say that H admits a density of states (DOS), and we commonly write νH for ν2.

In the paper [AMSZ20], it has been proven for the choice X = Rd, w(x) = (1 + |x|2)− d
2 ,

and H = −∆ +MV with V ∈ L∞(Rd) real-valued, that the measures (5.1) and (5.2) are

equal up to a constant depending on d (and independent of ω). Hence, the measure (5.1)

in that setting is in fact independent of ω. It was explained in Section 1.5 that the case

V = 0 is a Fourier transform of Connes’ integral formula (Theorem 1.4.3), the general

case is substantially more work.

In this chapter, we prove this Dixmier trace formula for countable discrete metric spaces.

This comes with an additional condition on the metric space, a condition that ensures the

volumes |B(x0,R)| grow in a regular and sub-exponential manner as R → ∞. Namely,

we will require that
|B(x0, rk+1)|
|B(x0, rk)|

→ 1, k → ∞,

where {rk}∞
k=0 is the set {d(y,x0) : y ∈ X} (without multiplicities) ordered in increasing

manner. We will call this Property (C). The main theorem of this chapter is then the

following, the proof of which is specific to the discrete case and is based on recent advances

in operator theory and the notion of V -modulated operators hatched in the theory of

singular traces, see [KLPS13] or [LSZ21, Section 7.3] and Section 1.6.

Theorem 5.0.1. Let (X, dX) be a countably infinite discrete metric space such that every

ball contains at most finitely many points, and let x0 ∈ X. Then the image of the map

dX(·,x0) : X → R≥0 is a collection of isolated points which can be ordered in an increasing

way, denote this by {rk}k∈N ⊆ R. Suppose that

lim
k→∞

|B(x0, rk+1)|
|B(x0, rk)|

= 1. (C)
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Then for any positive, radially strictly decreasing function w : X → C with Mw ∈ L1,∞

we have that for every extended limit ω ∈ ℓ∗∞

Trω(TMw) = Trω(Mw) lim
k→∞

Tr(TMχB(x0,rk)
)

|B(x0, rk)|
, (5.3)

for all bounded linear operators T on ℓ2(X) for which the limit on the right-hand side

exists.

In particular, if H is a self-adjoint, possibly unbounded, operator on ℓ2(X) admitting a

density of states measure νH , then for all extended limits ω,

Trω(f(H)Mw) =
∫

R
f dνH , f ∈ Cc(R). (5.4)

Because {rk}∞
k=0 denotes all possible distances dX(x0, ·) in the discrete space X, the limit

on the right-hand side of equation (5.3) exists if and only if the continuous limit

lim
R→∞

Tr(TMχB(x0,R)
)

|B(x0,R)|

exists, and these limits are necessarily equal. This is therefore in line with the definition

of the density of states (5.2).

In comparison with the Euclidean case, we do not have to make any assumptions on the

operator T beyond the existence of the existence of the limit (5.3), whereas [AMSZ20]

is specific to the case T = f(−∆ +MV ). Furthermore, [AMSZ20] has the requirement

d ≥ 2 on the dimension of the space Rd, an analogue of which is not necessary in the

discrete setting. Finally, Theorem 5.0.1 holds for any choice of radially symmetric strictly

decreasing function w : X → C such that Mw ∈ L1,∞ (the latter can be written more

briefly as w ∈ ℓ1,∞(X)). In particular, we can always pick

w(x) :=
1

1 + |B(x0, dX(x0,x))| , x ∈ X,

for which Trω(Mw) = 1, see Corollary 5.2.3. This provides that the constant of propor-

tionality in (5.3), Trω(Mw), for this choice of weight w is independent of the choice of ω.

Hence, for this choice of w, when T = f(H) for an operator H admitting a density of
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states, this ensures that the measure (5.1) is independent of the choice of ω as in the

Euclidean case.

By definition, independence of the measure (5.1) with respect to ω is equivalent to the

operators f(H)Mw being Dixmier measurable. Let us conclude this introduction with an

example illustrating that this is a strictly weaker requirement than H admitting a density

of states.

Example 5.0.2. Let X = N with the usual metric d(x, y) = |x− y|, and take the base-

point x0 = 0. On ℓ2(N), a diagonal operator H(en) = λnen admits a density of states if

the limits

lim
n→∞

1
|B(x0,n)| Tr(f(H)MχB(x0,n)

) = lim
n→∞

1
n+ 1

n∑
k=0

f(λk), f ∈ Cc(R),

exist.

With the choice w(n) := 1
n+1 , we have that Mw ∈ L1,∞. Then, for f ∈ C(R), we have

that f(H)Mw ∈ L1,∞ is Dixmier measurable if and only if the limit

lim
n→∞

1
log(2 + n)

n∑
k=0

λ(k, f(H)Mw)

exists [LSZ21, Theorem 9.1.2(c)], where λ(f(H)Mw) is an eigenvalue sequence of f(H)Mw

ordered in decreasing modulus. Since f(H)Mw is Mw-modulated (see Section 1.6 or [KLPS13]

and [LSZ21, Section 7.3]), we have through Theorem 1.6.4 that
n∑
k=0

λ(k, f(H)Mw) =
n∑
k=0

f(λk)

k+ 1 +O(1), n → ∞.

Hence, f(H)Mw is Dixmier measurable if and only if the limit

lim
n→∞

1
log(n+ 2)

n∑
k=0

f(λk)

k+ 1 ,

exists.

With the choice

λn :=


0, n ∈ [22m + 1, 22m+1], m = 0, 1, 2, . . . ,

1, n ∈ [22m−1 + 1, 22m], m = 1, 2, 3, . . . ,
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the diagonal operator H does not admit a density of states, but f(H)Mw is Dixmier

measurable for all f ∈ C(R).

Proof. Observe that 1
n+1

∑n
k=0 λn does not converge as n → ∞, since

1
22m + 1

22m∑
k=0

λn =
1

22m + 1

2m∑
k=0

(−2)k

=
1

22m + 1

(
1 − (−2)2m+1

1 + 2

)

→ 2
3;

1
22m+1 + 1

22m+1∑
k=0

λn =
1

22m+1 + 1

2m∑
k=0

(−2)k

=
1

22m+1 + 1

(
1 − (−2)2m+1

1 + 2

)

→ 1
3,

where we used the closed-form formula for the sum of a geometric series. Hence H cannot

admit a density of states.

Next, we show that 1
log(2+n)

∑n
k=0

λk
k+1 converges as n → ∞. For convenience, we will

prove the convergence of 1
log(n)

∑n
k=1

λk
k , taking n > 2, and we will use that the harmonic

number H(n) =
∑n
k=1

1
k has the expansion H(n) = log(n) + γ + 1

2n +O
(

1
n2

)
, where γ is

the Euler-Mascheroni constant [Knu97, Section 1.2.7]. For m ≥ 1,

1
log(22m)

22m∑
k=1

λk
k

=
1

2m log(2)

(
1 +

m∑
k=1

H(22k) −H(22k−1)

)

=
1

2m log(2)

m∑
k=1

log(2)(2k− (2k− 1))+

+
1

2m log(2) +
1

2m log(2)

m∑
k=1

1
4k − 1

4k− 2 +O

( 1
k2

)
→ 1

2,

where for the last term we used that for any sequence that converges to zero, its Cesàro
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mean also converges to zero. Likewise,

1
log(22m+1)

22m+1∑
k=1

λk
k

=
1

(2m+ 1) log(2)

(
1 +

m∑
k=1

H(22k) −H(22k−1)

)

=
m

2m+ 1 +
1

(2m+ 1) log(2)+

+
1

(2m+ 1) log(2)

m∑
k=1

1
4k − 1

4k− 2 +O

( 1
k2

)
→ 1

2.

Note that 1
log(n)

∑n
k=1

λk
k increases monotonically on n ∈ [22m−1 + 1, 22m] and decreases

monotonically on n ∈ [22m + 1, 22m+1]. Therefore the above shows that 1
log(n)

∑n
k=1

λk
k →

1
2 , and hence also 1

log(n)
∑n
k=1

1−λk
k → 1

2 . Hence, for f ∈ C(R),

1
log(2 + n)

n∑
k=0

f(λk)

k
→ f(0) + f(1)

2 , n → ∞,

which thus shows that f(H)Mw is Dixmier measurable.

Do note that the above example is not a (discrete) Schrödinger type operator. It is

unknown whether these two conditions still differ when restricting to such operators. This

is also an open question for the Euclidean case, and in [AMSZ20] it was conjectured that

these conditions are in fact equivalent for Schrödinger operators on Euclidean space.

The structure of the rest of the chapter is as follows. First we will discuss Property (C) in

Section 5.1 and give examples of spaces where it is satisfied. In a way, we will return to the

origin of the density of states, and show that crystals are included, the original source of

the concept of a DOS (see [HBE87] and a very early use of the DOS in this context in 1929

by F. Bloch [Blo29]). Other concrete examples taken from physics will be considered too,

demonstrating that condition (C) appearing in this theorem is very natural. Section 5.2

is the heart of the chapter where we prove the main result, Theorem 5.0.1. Finally, in

Section 5.4 we apply the Dixmier trace formula for the DOS to provide a new proof of the

equivariance under translations for the DOS on lattices.
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5.1. METRIC CONDITION

5.1 Metric condition

The main theorem of this chapter is applicable to countably infinite discrete metric spaces

such that every ball contains at most finitely many points and that also satisfy property (C)

holds. Namely, we require that

lim
k→∞

|B(x0, rk+1)|
|B(x0, rk)|

= 1, (C)

where {rk}k∈N is the increasing sequence created by ordering the set {dX(x0, y) : y ∈ X}

in increasing manner (which results in a sequence rk → ∞ since every ball in X contains

at most finitely many points).

First, observe that property (C) is a condition on the so-called crystal ball sequence

{|B(x0, rk)|}k∈N of the metric space X [CS97], or alternatively after defining S(x0, rk) :=

B(x0, rk) \B(x0, rk−1) it is a condition on the coordination sequence {|S(x0, rk)|}k∈N [Bru79;

CS97; OKe95].

To build some intuition, consider the following comment by J.E. Littlewood. Upon en-

countering the condition limn→∞
λn+1
λn

= 1 he remarks [Lit11]: “[This condition is] satisfied

when λn is any function of less order than eεn for all values of ε, which increases in a regular

manner. When, however, λn > eεn, the theorem breaks down altogether.” This observa-

tion is apt, indeed our restriction on the metric space X is a strictly stronger assumption

than sub-exponential growth of the sequence {|B(x0, rk)|}k∈N (with respect to k), but ex-

actly what kind of regular growth plus subexponential growth would imply condition (C)

is difficult to pin down.

There is an equivalent description of property (C), the proof of which can be found in

a recent paper by Cipriani and Sauvageot [CS23, Proposition 2.9]. The proposition they

prove is slightly different, but the given proof is immediately applicable to the following.

Proposition 5.1.1. Let (X, dX) be an infinite, discrete metric space such that each ball

contains at most finitely many points, choose some point x0 ∈ X and order {dX(x0, y) :
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y ∈ X} in increasing manner to define the sequence {rk}k∈N. Then

lim
k→∞

|B(x0, rk+1)|
|B(x0, rk)|

= 1

if and only if

|B(x0, r)| ∼ φ(r)

for some continuous function φ : R+ → R+.

Proof. The proof is exactly the same as in [CS23, Proposition 2.9] after replacing NL(x)

by |B(x0, r)| and Mk by |B(x0, rk)|.

Remark 5.1.2. For the Cayley graph of the free group F2 we have rk = k, |B(x0, k)| = 2k

and hence |B(x0, r)| = 2⌊r⌋, but

|B(x0, r)|
2r = 2⌊r⌋−r

which does not converge as r → ∞. This illustrates that |B(x0, r)| ∼ φ(r) for some

continuous function φ is a stronger assumption that one might expect.

In the same paper, another condition is given which is sufficient for property (C) to be

satisfied [CS23, Proposition 2.8].

Proposition 5.1.3. Let X be a metric space as in Proposition 5.1.1. If |B(x0, rk)| ∼ f(k)

(letting now k → ∞ over the integers) for a function f ∈ C1(0, ∞) such that f ′(x)
f (x) → 0 as

x → ∞, then

lim
k→∞

|B(x0, rk+1)|
|B(x0, rk)|

= 1.

In particular, if |B(x0, rk)| is a polynomial in k, then |B(x0,rk+1)|
|B(x0,rk)|

→ 1 as k → ∞.

Proof. See [CS23, Proposition 2.8].

To be used later on, we also provide the following lemma.
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5.1.1 Solid matter

Lemma 5.1.4. Let X be a metric space as in Proposition 5.1.1. If there exist constants

C1,C2, d and R such that for rk > R we have

C1k
d < |S(x0, rk)| < C2k

d, (5.5)

then X has property (C).

Proof. If C1k
d < |S(x0, rk)| < C2k

d, we can deduce that also |B(x0, rk)| ≥ C1
d+1k

d+1 +

O(kd) for rk > R, and therefore

lim
k→∞

|S(x0, rk+1)|
|B(x0, rk)|

= 0, (5.6)

which is equivalent with

lim
k→∞

|B(x0, rk+1)|
|B(x0, rk)|

= 1.

As a final general comment, when writing condition (C) in the manner of Equation (5.6), it

resembles a type of Følner condition. In particular, it is reminiscent of work by Adachi and

Sunada on the DOS on amenable groups where a closely related property is the subject

of interest, namely Property (P) in [AS93, Proposition 1.1], also compare with [AS93,

Lemma 3.2].

5.1.1 Solid matter

Consider any kind of rigid matter whose atoms or molecules are arranged in Euclidean

space in such a way that it can be described by a tiling of that space. To be precise, we

mean a tiling generated by only a finite selection of different tiles, with each type of tile

having a fixed arrangement of atoms within (at least 1). Any crystal can be described in

this a way using only one tile by considering its underlying Bravais lattice [AM76, Chap-

ter 4], but the definition above includes quasicrystals [SBGC84; LS84]. For the approach

of quasicrystals by tilings see for example [Hof95; Jar89; Nel86]. Specifically, [Hof93]

establishes the existence of the integrated DOS, which is the existence of the function

λ 7→ νH(−∞,λ), for every self-adjoint vertex-pattern-invariant operator on aperiodic self-

similar tilings.
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If we define the set X of the metric space (X, dX) as the atoms or molecules of the material

and impose the induced Euclidean metric, then we claim that this space has property (C).

Proposition 5.1.5. Let X be a discrete subset of Rd with the inherited Euclidean metric,

such that X can be defined by a tiling as described above. Then (X, dX) has property (C).

Proof. Without loss of generality, assume that the diameters of the tiles are all less than

1. Hence rk+1 ∈ (rk, rk + 2], and therefore it suffices to show that

|B(x0, rk + 2) \B(x0, rk)|
|B(x0, rk)|

k→∞−−−→ 0.

Now, the number of vertices contained in B(x0, rk + 2) \B(x0, rk) is bounded from above

by some constant times (rk)
d−1: if the smallest tile has volume V , and each tile contains

at most n atoms, and B̃(x0, rk + 2) denotes the ball in Rd, then there can be at most

n |B̃(x0,rk+2)\B̃(x0,rk)|
V vertices in B(x0, rk + 2) \B(x0, rk), which is bounded by C1(rk)

d−1.

If the volume of the biggest tile is W , the number of tiles that are fully contained in

B(x0, rk) is similarly bounded from below by |B̃(x0,rk−1)|
W because we assumed that the

diameter of the tiles is less than 1. Recall that we assumed that each tile contains at

least one atom. Then the number of atoms in B(x0, rk) can be bounded from below by
|B̃(x0,rk−1)|

W , which is of the form C2(rk)
d +O((rk)

d−1). Hence indeed

0 ≤ |B(x0, rk + 2) \B(x0, rk)|
|B(x0, rk)|

≤ C1(rk)
d−1

C2(rk)d +O((rk)d−1)
k→∞−−−→ 0,

and we see that this metric space satisfies condition (C).

5.1.2 Crystals

In another approach, we can take the atoms of crystals as the vertices of a graph and define

our discrete metric space (X, dX) as this graph with shortest-path metric (as a first obser-

vation, note that for any graph with the shortest-path metric, we have rk = k). Common

choices for such a construction are the contact graph [CS97] and the Voronoi graph [CS93,

p. 33]. See for example the very recent paper [POO21] based on the model [OP05] which
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shows the existence of the DOS measure on Z for a suitable family of Dirac operators, the

very recent [PRCB21] or [Pas80] for an older result.

For crystals specifically, such a graph Γ comes with a free Zd action such that the quotient

graph Γ/Zd is finite. This is a simple observation by considering the underlying Bravais

lattice of any crystal [AM76, Chapter 4]. A recent advancement by Y. Nakamura, R.

Sakamoto, T. Masea and J. Nakagawa [NSMN21] concerns exactly such (even possibly

directed) graphs Γ with a free Zd action such that Γ/Zd is finite. Namely, these authors

have proven that the coordination sequence {|S(x0, k)|}k∈N is then of quasi-polynomial

type, by which they mean the following. A quasi-polynomial is defined as a function

p : N → Z with p(k) = cm(k)km + cm−1k
m−1 + · · · + c0(k) where ci(k) are all periodic

with an integral period. Equivalently, it is a function such that for some integer N

p(k) =



p0(k) k = 0 mod N

p1(k) k = 1 mod N

...

pN−1(k) k = N − 1 mod N ,

where p0, . . . , pN−1 are polynomials. A function of quasi-polynomial type is then defined

as a function f : N → Z such that there exists some quasi-polynomial p and an integer

M such that f(n) = p(n) for all n ≥ M . See also [Sta86, Section 4.4].

Proposition 5.1.6. Let Γ be a graph with a free Zd action such that the quotient graph

Γ/Zd is finite. Then (Γ, dΓ), where we take dΓ as the shortest-path metric, has prop-

erty (C).

Proof. By [NSMN21, Theorem 1.1] we have that |S(x0, k)| is a quasi-polynomial, denote

this quasi-polynomial by p(k) and its constituent polynomials by p1, . . . , pN−1. Suppose

that the polynomial pr is one with maximal degree, i.e. deg(pi) ≤ deg(pr) = t for all

i = 0, . . . ,N − 1. Then there exist some constants C1,C2 and L such that p(k) ≤ C1k
t

for all k ≥ L, and also pr(k) = C2k
t +O(kt−1). Now take k ∈ Z≥0 arbitrary, and define

a ∈ Z≥0 as the smallest positive integer such that k = mN + r + a for some m ∈ Z.
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It follows that a ∈ {0, . . . ,N − 1}, and hence note that mN = k − r − a ≥ k − 2N , i.e.
k
N − 2 ≤ m ≤ k

N .

k∑
n=1

p(n) ≥
m∑
n=0

pr(nN + r)

=
m∑
n=0

C2(nN + r)t +O((m+ 1)(nN + r)t−1)

= C2

m∑
n=0

(nN)d +O(kt)

= C3k
t+1 +O(kt).

Therefore we have that

0 ≤ p(k+ 1)∑k
n=1 p(n)

≤ C1(k+ 1)t
C3kt+1 +O(kt)

k→∞−−−→ 0,

i.e. |S(x0,k+1)|
|B(x0,k)| converges to zero as k → ∞.

5.1.3 The integer lattice

From the previous two subsections it follows that respectively (Zd, ∥·∥2) and (Zd, ∥·∥1)

have property (C), where we define

∥v∥p :=

(
d∑
i=1

|vi|p
)1/p

for 1 ≤ p < ∞ and for p = ∞

∥v∥∞ := sup
i=1,...,d

|vi| .

Even though the base space of these two metric spaces is the same, the difference between

these is the domain undergoing the thermodynamic limit in the definition of the DOS,

which can make a difference as demonstrated in [AMSZ22]. As mentioned, the existence of

the DOS in the case Z has been established for a suitable family of Dirac operators [OP05].

Another example is that, using (Zd, ∥ · ∥∞) as a model, the existence of a surface DOS

was established for a quantum model with a surface [EKSS88].
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In fact, (Zd, ∥·∥p) has property (C) for all 1 ≤ p ≤ ∞. This is simply because in the

metric space (Zd, ∥·∥p) we have |B(0, r)| = Vp(d)rd +O(rd−1) where Vp(d) denotes the

volume of the ℓp unit ball in Rd, and Proposition 5.1.1 then implies condition (C).

5.1.4 Quasicrystals

Analogously to Subsection 5.1.2 one can consider graphs constructed from quasicrystals,

but these will be aperiodic by definition [Jar89; Nel86]. For some investigations of the

DOS on quasicrystals, see [Hof93; Hof95].

On a case-by-case basis, there are some aperiodic tilings for which condition (C) can be

expected to hold on their vertex graph. Firstly, a Penrose tiling. This proposition is

entirely based on recent results by A. Shutov and A. Maleev [SM15; SM18].

Proposition 5.1.7. Consider a 2D Penrose tiling in the construction of [SM15], which

is a Penrose tiling with five-fold symmetry with respect to a chosen origin 0. Consider

the graph induced by this tiling (i.e. with the same vertices and edges as the tiles) and

take this graph with the shortest-path metric as the definition of the metric space (X, dX).

Then this metric space has property (C).

Proof. For this particular tiling, Shutov and Maleev showed [SM18] that

|S(0, k)| = C(n)n+ o(n)

where C(n), denoting τ = (1 +
√

5)/2, takes a value between 10τ−2 ≈ 3.8 and 10τ−2 +

(5/2)τ−1 ≈ 5.4 depending on n. By Lemma 5.1.4, we can then conclude that the vertex

graph of this Penrose tiling satisfies condition (C).

Remark 5.1.8. Similar asymptotic behaviour can be expected when taking a different base

point, or different Penrose tilings, but this is still an open problem. Numerical data sup-

ports this conjecture for Penrose tilings [BG06], as well as that this metric condition will

be satisfied by aperiodic tilings like the Ammann-Beenker tiling [BG06], a certain class of

quasi-periodic self-similar tilings [SMZ10] and two-dimensional quasiperiodic Ito–Ohtsuki
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tilings [SM08]. To this author’s knowledge, no quasiperiodic tiling is known that can serve

as a counter-example to property (C).

5.1.5 Percolation

A successful model for studying conduction properties of a crystal with impurities via the

density of states is percolation (in this context also called quantum percolation) [AO82;

Cha+86; KM06; Ves05; YN87], see also [Gri99, Section 13.2] for a general approach. In

broadest generality, percolation describes the study of a statistical procedure on a graph,

which means adding, removing or otherwise manipulating edges or vertices based on some

probabilistic method [Gri99, Chapter 1].

Let us focus on so-called bond percolation on the graph Zd. Choosing some chance

0 ≤ p ≤ 1, we declare each edge on the graph Zd to be open with probability p (in an

independent manner), and closed with probability 1 − p. It is a well-known fact that there

exists a phase transition at a critical probability pc(d) [Gri99, Chapter 1]. Namely, for

p > pc(d) there exists almost surely a unique infinite cluster of vertices connected by open

edges, while for p < pc(d) almost surely all clusters of vertices that are connected by open

edges are finite.

In the super-critical region, meaning p > pc(d), one can wonder if our metric condition

holds on the infinite cluster, meaning that we take (X, dX) as the infinite cluster with

induced shortest-path metric. This turns out to be true, which follows quite directly from

a result by R. Cerf and M. Théret [CT16].

Proposition 5.1.9. Let X be the (almost surely unique) infinite cluster on Zd after super-

critical bond percolation (with p > pc(d)), and let dX be the shortest path metric on X.

Then (X, dX) has property (C).

Proof. We first set up the exact situation as in [CT16]. Denote the set of edges in our

graph Zd by Ed, and consider a family of i.i.d. random variables (t(e), e ∈ Ed) taking

values in [0, ∞] (including ∞), with common distribution F . To be very precise, for each
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variable t(e) we take [0, ∞] as sample space, we define a σ-algebra by declaring A ⊆ [0, ∞]

measurable if A \ {∞} is Lebesgue measurable in R, and F : [0, ∞] → [0, 1] is a measurable

function that defines the distribution of the variable t(e).

These variables can be interpreted as the time it takes to travel along the corresponding

edge. Then consider the random extended metric on Zd by defining for x, y ∈ Zd

T (x, y) = inf{
∑
e∈γ

t(e) : γ is a path from x to y}.

Note that if the distribution F is such that F ({1}) = p, F ({∞}) = 1 − p, T (x, y) is always

either a positive integer or infinite and defines precisely the usual induced shortest-path

metric on Zd after bond percolating on Zd with chance p. Also observe that generally,

if F ([0, ∞)) > pc(d), there exists almost surely a unique infinite connected cluster of

vertices [CT16].

Now define B(x0, t) := {y ∈ Zd : T (x0, y) ≤ t}. Then by [CT16, Theorem 5(ii)], if

F ([0, ∞)) > pc(d), F ({0}) < pc(d) and x0 is a vertex on the infinite cluster, as t → ∞ we

have almost surely
|B(x0, t)|

td
→ C

for some constant C ∈ R. Returning to the distribution F ({1}) = p, F ({∞}) = 1 − p,

we can then conclude that

|B(x0, k+ 1)|
|B(x0, k)|

kd

(k+ 1)d → 1

as k → ∞, and hence
|B(x0, k+ 1)|

|B(x0, k)| → 1.

Remark 5.1.10. Site percolation is similar to bond percolation, but as the name suggests

we would assign each vertex to be open with probability p and closed with probability 1 −

p [Gri99, Section 1.6]. Arguably, this is a more physically suitable model of an alloy. The

argument used above to prove the cited result for bond percolation can be used for site

percolation as well, but this author is not aware of an explicit demonstration.
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5.2 Dixmier trace formula for the DOS

In this section we prove Theorem 5.0.1 based on a series of lemmas.

To start off, we will demonstrate the existence of a function w such that Mw has positive

Dixmier trace as required by Theorem 5.0.1. For that purpose we first need a lemma

generalising the fact that ∑n
k=1

1
k ∼ log(n).

Lemma 5.2.1. Let {ak}k∈N be a divergent, increasing sequence of strictly positive real

numbers, such that limk→∞
ak+1
ak

= 1. We use the convention that a−1 = 0. Then
k∑
j=0

aj − aj−1
aj

∼ log(ak), k → ∞.

Proof. Note first that ∑k
j=0

aj−aj−1
aj

equals 1 plus a lower Riemann sum of the integral∫ ak
a0

dx
x . Hence,

k∑
j=0

aj − aj−1
aj

≤ log(ak) + 1 − log(a0).

Next, since limk→∞
ak+1
ak

= 1, for ε > 0 we can choose K such that for k > K we have
ak
ak−1

< 1 + ε, which can be rearranged to 1
ak−1

− 1
ak
< ε

ak
. Note that log(ak) − log(a0) ≤∑k

j=1
aj−aj−1
aj−1

since it is an upper Riemann sum of the integral
∫ ak
a0

dx
x . Therefore, for

k > K,

log(ak) − log(a0) ≤
k∑
j=1

aj − aj−1
aj−1

=
k∑
j=1

aj − aj−1
aj

+
K∑
j=1

(aj − aj−1)

(
1

aj−1
− 1
aj

)

+
k∑

j=K+1
(aj − aj−1)

(
1

aj−1
− 1
aj

)

< (1 + ε)
k∑
j=1

aj − aj−1
aj

+
K∑
j=1

(aj − aj−1)

(
1

aj−1
− 1
aj

)
.

Dividing by log(ak) (assuming without loss of generality that ak ̸= 1) and taking the

lim inf, we get

1 ≤ (1 + ε) lim inf
k→∞

1
log(ak)

k∑
j=1

aj − aj−1
aj

.
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Combined with our earlier estimate, we can conclude that

k∑
j=0

aj − aj−1
aj

∼ log(ak), k → ∞.

We will now make use of Lemma 4.1.6, which originally appeared in a slightly weaker form

in the paper this chapter is based on [Aza+22, Lemma 4.8]. For convenience, let us restate

it here.

Lemma 5.2.2. Let ϕ : N → R>0 be an increasing function such that ϕ(n) → ∞ as

n → ∞, let {ak}k∈N ⊆ R be a sequence such that
{

1
ϕ(n)

∑n
k=0 |ak|

}∞

n=0
is bounded, and let

{k0, k1, . . . } be an infinite, increasing sequence of positive integers such that

lim
n→∞

ϕ(kn+1)

ϕ(kn)
= 1,

and
1

ϕ(kn)

kn∑
k=kn−1+1

|ak| = o(1), n → ∞.

Labeling kin := min{ki : ki ≥ n}, we have that

1
ϕ(n)

n∑
k=0

ak =
1

ϕ(kin)

kin∑
k=0

ak + o(1), n → ∞.

Corollary 5.2.3. Let (X, dX) be a countably infinite discrete metric space such that every

ball contains at most finitely many points, satisfying property (C). Let x0 ∈ X, and define

w(x) := (1 + |B(x0, dX(x,x0))|)−1. Then w ∈ ℓ1,∞(X), Mw is Dixmier measurable, and

Trω(Mw) = 1 for all extended limits ω ∈ ℓ∗∞.

Proof. Applying Lemma 5.2.1 to the sequence ak = 1 + |B(x0, rk)|, we obtain

lim
k→∞

1
log(2 + |B(x0, rk)|)

k∑
j=1

|∂B(x0, rj)|(1 + |B(x0, rj)|)−1 = 1.

By Lemma 5.2.2, it follows that

lim
k→∞

1
log(2 + k)

k∑
j=1

µ(k,Mw) = 1.
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We now present a modified Toeplitz lemma, which follows from much the same proof as

in Shiryaev [Shi96, Chapter IV, §3, Lemma 1].

Lemma 5.2.4 (Toeplitz lemma). Let {cn}∞
n=0 be a sequence of non-negative numbers, and

let {zn}∞
n=0 be a sequence of complex numbers such that zn → L ∈ C. If dn =

∑n
k=0 ck

diverges, then:
n∑
k=0

ckzk = Ldn + o(dn).

as n → ∞.

Proof. Let ε > 0 and take K > 0 sufficiently large such that if k > K then |zk −L| < ε.

For any n > K, rewriting the left hand side of the equality above as

n∑
k=0

ckzk =
n∑
k=0

ckL+
K∑
k=0

ck(zk −L) +
n∑

k=K+1
ck(zk −L),

we see that ∣∣∣∣∣ 1
dn

n∑
k=0

ck(zk −L)

∣∣∣∣∣ ≤ 1
dn

K∑
k=0

ck|zk −L| + ε.

Since dn → ∞ as n → ∞, it follows that:

lim sup
n→∞

∣∣∣∣∣ 1
dn

n∑
k=0

ck(zk −L)

∣∣∣∣∣ ≤ ε.

Since ε is arbitrary, we have:
n∑
k=0

ck(zk −L) = o(dn)

and this completes the proof.

Lemma 5.2.5. Let {xk}∞
k=0 and L ∈ C be such that as n → ∞,

n∑
k=0

xk = Ln+ o(n).

Let {an}∞
n=0 be a sequence of non-negative numbers such that:

1. {an}∞
n=0 is non-increasing;

2. supk≥0 kak < ∞, that is, the sequence is in ℓ1,∞;
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3. bn :=
∑n
k=0 ak diverges.

Then
n∑
k=0

akxk = Lbn + o(bn)

as n → ∞.

Proof. Let yn =
∑n−1
k=0 xk with y0 = 0. Abel’s summation formula gives

n∑
k=0

akxk =
n∑
k=0

ak(yk+1 − yk)

= yn+1an −
n∑
k=1

(ak − ak−1)yk

= yn+1an +
n∑
k=1

yk
k

· k(ak−1 − ak).

By assumption (1) we have ak−1 ≥ ak so the sequence ck := k(ak−1 − ak) is non-negative,

and moreover as n → ∞,
n∑
k=1

ck = bn−1 − nan → ∞,

since by assumption (3) bn → ∞ and by assumption (2) nan is bounded. Therefore

Lemma 5.2.4 applies to ck and zk := yk
k , since by assumption limk→∞

yk
k = L, and hence

it follows that
n∑
k=1

yk
k

· k(ak−1 − ak) = L(bn−1 − nan) + o(bn−1 − nan)

as n → ∞. Thus,
n∑
k=0

akxk =
yn+1
n

· nan + L(bn−1 − nan) + o(bn−1 − nan)

= Lbn−1 + o(bn−1 − nan),

where in the last equality we have absorbed the vanishing term
(yn+1

n −L
)
nan into o(bn−1 −

nan). Since by assumption (2) the sequence {nan}∞
n=1 is bounded, it follows that:

n∑
k=0

akxk = Lbn + o(bn).
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We could also write the result of Lemma 5.2.5 as:

lim
n→∞

∑n
k=0 xk∑n
k=0 1 = lim

n→∞

∑n
k=0 akxk∑n
k=0 ak

whenever the left hand side exists and {ak}∞
k=0 satisfies the stated assumptions.

Our next aim is to prove Lemma 5.2.6, which is the crux of the proof of Theorem 5.0.1.

The proof is based on the notion of a V -modulated operator from [KLPS13] or [LSZ21,

Section 7.3], see also Section 1.6. Recall that, since 0 < W ∈ L1,∞, we have that TW is

W -modulated for all T ∈ B(H). Applying Theorem 1.6.4, we have as n → ∞,
n∑
k=0

λ(k,TW ) =
n∑
k=0

⟨ek,Tek⟩µ(k,W ) +O(1). (5.7)

Lemma 5.2.6. Let 0 < W ∈ L1,∞(H) \ L1(H), and let {ek}∞
k=0 be an orthonormal basis

such that Wek = µ(k,W )ek for all k ≥ 0. If T is a bounded operator such that
n∑
k=0

⟨ek,Tek⟩ = Ln+ o(n), n → ∞

where L ∈ C then:
n∑
k=0

λ(k,TW ) = L

(
n∑
k=0

µ(k,W )

)
+ o

(
n∑
k=0

µ(k,W )

)
. (5.8)

Moreover,

Trω(TW ) = Trω(W )L

for all extended limits ω.

Proof. By the assumption 0 < W ∈ L1,∞ \ L1, Lemma 5.2.5 applies with ak = µ(k,W )

and xk = ⟨ek,Tek⟩, so
n∑
k=0

⟨ek,Tek⟩µ(k,W ) = L

(
n∑
k=0

µ(k,W )

)
+ o

(
n∑
k=0

µ(k,W )

)
, n → ∞.

Thus (5.7) yields the first equality (5.8).

To obtain the result concerning Dixmier traces, we divide both sides of (5.8) by log(n+ 2)

to get:
1

log(n+ 2)

n∑
k=0

λ(k,TW ) = L

(
1

log(n+ 2)

n∑
k=0

µ(k,W )

)
+ o(1).
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Thus if ω is an extended limit,

ω

{ 1
log(n+ 2)

n∑
k=0

λ(k,TW )

}∞

n=0

 = LTrω(W ).

The left hand side is exactly the Dixmier trace Trω(TW ).

Remark 5.2.7. The result of Lemma 5.2.6 can be written in a different way. We could

say that:

Trω(TW ) = Trω(W ) lim
n→∞

1
n+ 1

n∑
k=0

⟨ek,Tek⟩ (5.9)

whenever the right hand side exists.

Now Lemma 5.2.2 combined with (5.9) immediately implies the following proposition.

Proposition 5.2.8. If T is a bounded linear operator and 0 < W ∈ L1,∞ such that

lim
n→∞

|{k ≥ 0 : µ(k,W ) ≥ εn+1}|
|{k ≥ 0 : µ(k,W ) ≥ εn}|

= 1.

for some decreasing, strictly positive sequence εn → 0, then for all extended limits ω we

have

Trω(TW ) = Trω(W ) lim
n→∞

Tr(Tχ[εn,∞)(W ))

Tr(χ[εn,∞)(W ))
, (5.10)

whenever the limit on the right hand side exists.

This proposition gives us the density of states formula for the discrete case. The idea is

that in ℓ2(X) we consider the basis {δv}v∈X of indicator functions of points p ∈ X, and W

is an operator of pointwise multiplication by a function which is radially decreasing with

respect to some point x0 ∈ X, so that χ[εn,∞)(W ) is the indicator function of a ball, and

the limit n → ∞ is equivalent to taking a limit over balls with radius going to infinity.

This is where property (C) as discussed in Section 5.1 comes in, as this ensures that the

premise of Proposition 5.2.8 is satisfied.

Proof of Theorem 5.0.1. Let W = Mw, where w : X → C is a positive, radially strictly

decreasing function with Mw ∈ L1,∞. If W is trace-class, the theorem is trivial as both

sides are zero. So, assume that 0 < W ∈ L1,∞(H) \ L1(H). Then {δv}v∈X is a basis
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of normalised eigenvectors for W , with eigenvalue corresponding to δv equal to w(v).

By assumption w(v) is a strictly decreasing function of dX(x0, v), and hence the sets

{v : w(v) ≥ δ} are balls. In fact, if we define εn = µ̃(n,W ), where µ̃(n,W ) is the nth

largest singular value of W counted without multiplicities, we have that

|{k ≥ 0 : µ(k,W ) ≥ εn}| = |{v : w(v) ≥ εn}| = |B(x0, rn)|,

and we have assumed that

lim
n→∞

|B(x0, rk+1)|
|B(x0, rk)|

= 1.

Hence due to Lemma 5.2.6 and Lemma 5.2.2, we can then conclude that

Trω(TW ) = Trω(W ) lim
k→∞

1
|B(x0, rk)|

∑
v∈B(x0,rk)

⟨δv,Tδv⟩

since we have assumed that the limit on the right exists. Observing that the sum on the

right side is equal to Tr(TMχB(0,rk)
) gives (5.3).

Remark 5.2.9. If we again denote µ̃(n,Mw) as the nth largest singular value of Mw

counted without multiplicities, define mn as the multiplicity corresponding to this singular

value and also define Mn :=
∑n
k=1mk, then we have effectively imposed

lim
n→∞

Mn+1
Mn

= 1.

Now compare this to the paper by Cipriani and Sauvageot [CS23] also referenced in Sec-

tion 5.1. They study densely defined, nonnegative, unbounded, self-adjoint operators with

exactly such a property for the multiplicities of its eigenvalues, and our (Mw)−1 would

fit such a description. The link between the DOS as considered in this chapter and the

spectral weight those authors define remains unclear as of yet.

5.3 Problems of measurability

This section is mostly the work of Edward McDonald. Going back to the Toeplitz

lemma 5.2.4, it is possible to get better behaviour of the convergence 1
bn

∑n
k=0 akxk → L

by assuming faster convergence of xk → L. For example, we have the following lemma

with an obvious proof.
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Lemma 5.3.1. Let an and bn satisfy the same assumptions as Lemma 5.2.4. Let xn ∈

C, n = 0, 1, . . . . If xk → L sufficiently fast such that {ak|xk −L|}∞
k=0 ∈ ℓ1, then:

n∑
k=0

akxk = Lbn +O(1).

Lemma 5.3.2. Let an and bn satisfy the same assumptions as Lemma 5.2.5. Let xn ∈

C, n = 0, 1, . . . and σn = 1
n+1

∑n
k=0 xk. If σn → L sufficiently fast such that {ak|σk −

L|}∞
k=0 ∈ ℓ1, then:

n∑
k=0

akxk = Lbn +O(1).

Proof. Let yn =
∑n−1
k=0 xk with y0 = 0. From the proof of Lemma 5.2.5 we have:

n∑
k=0

akxk = yn+1an +
n∑
k=1

σk · k(ak−1 − ak),

the sequence a′
k := k(ak−1 − ak) is non-negative, and as n → ∞,

n∑
k=1

a′
k = bn−1 − nan → ∞,

Therefore, since by assumption limk→∞ σk = L and {ak|σk − L|}∞
k=0 ∈ ℓ1, Lemma 5.3.1

applies with a′ in place of a and σk in place of xk, which gives
n∑
k=1

σk · k(ak−1 − ak) = L(bn−1 − nan) +O(1)

as n → ∞. Thus,
n∑
k=0

akxk =
yn+1
n

· nan + L(bn−1 − nan) +O(1)

= Lbn−1 +O(1) = Lbn +O(1).

For an operator A ∈ L1,∞, there are various criteria relating the behaviour of the sequence∑n
k=0 λ(k,A) to the measurability of A. For example, [LSZ21, Theorem 5.1.5] implies that

n∑
k=0

λ(k,A) − c log(2 + n) = O(1), n → ∞ (5.11)

if and only if φ(A) = c for all normalised traces φ on L1,∞ (c.f. [LSZ21, Theorem 9.1.2]).

For different classes of traces, different criteria are available, see [SSUZ15; Usa13].
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Theorem 5.3.3. Let (X, dX), T and w satisfy the assumptions of Theorem 5.0.1. Let en
be an orthonormal basis such that Mwek = µ(k,w)ek, where {µ(k,w)}∞

k=0 is the decreasing

rearrangement of w. If
1

n+ 1

n∑
k=0

⟨ek,Tek⟩ → L ∈ C

so fast that
∞∑
n=0

µ(n,w)
∣∣∣∣∣ 1
n+ 1

n∑
k=0

⟨ek,Tek⟩ −L

∣∣∣∣∣ < ∞

and there exists C > 0 such that:
n∑
k=0

µ(k,w) = C log(2 + n) +O(1),

then TMw is measurable in the sense of Connes, specifically

φ(TMw) = Trω(Mw) lim
n→∞

1
n+ 1

n∑
k=0

⟨ek,Tek⟩

for all traces φ on L1,∞.

Proof. Since TMw is Mw-modulated (see Definition 1.6.3 and Theorem 1.6.4), from (5.7)

we have
n∑
k=0

λ(k,TMw) =
n∑
k=0

⟨ek,Tek⟩µ(k,w) +O(1).

Hence, in view of (5.11) to prove the claim it suffices to show that
n∑
k=0

⟨ek,Tek⟩µ(k,w) = CL log(2 + n) +O(1).

By the second condition this is equivalent to
n∑
k=0

⟨ek,Tek⟩µ(k,w) = L
n∑
k=0

µ(k,w) +O(1),

so it suffices to prove this. This follows from Lemma 5.3.2 applied to xk = ⟨ek,Tek⟩ and

ak = µ(k,w).

We could also replace the assumption with the slightly stronger assertion:{
1

n+ 1

n∑
k=0

⟨ek,Tek⟩ −L

}∞

k=0

∈ Λlog,

where Λlog is the space of sequences x such that
∞∑
k=0

µ(k,x)
k+ 1 < ∞.
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5.4. EQUIVARIANCE OF THE DOS UNDER TRANSLATIONS OF THE
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5.4 Equivariance of the DOS under translations of the Hamil-

tonian

In this section, mostly the work of Edward McDonald, we will provide a straightforward

application of the Dixmier formula for the DOS put forward in Theorem 5.0.1. Namely,

we provide a new and original proof of the equivariance of the DOS on lattice graphs X

under translations of the Hamiltionian. By this we mean that if U denotes a shift operator

on ℓ2(X) and the DOS exists for both a Hamiltonian H and the shifted UHU∗, then the

DOS is equal for H and UHU∗. This fact is not hard to prove without Theorem 5.0.1,

but it does provide a different perspective on the claim.

Afterwards, we will discuss some consequences of this translation equivariance.

5.4.1 Translation equivariance on lattice graphs

We will consider the example where X = Zd, embedded as a subset of Rd with the

Euclidean metric. Precisely the same reasoning applies to other lattices X ⊂ Rd (recall

that a lattice in Rd is the Z-linear span of d linearly independent vectors).

We take

w(x) := (1 + ∥x∥2)
−d (5.12)

where x ∈ Zd like before.

Lemma 5.4.1. For all n ∈ Zd, we have:

{w(x) −w(x− n)}x∈Zd ∈ ℓ d
d+1 ,∞.

Proof. The difference w(x) −w(x− n) is provided by the formula:

w(x) −w(x− n) =
∫ 1

0
⟨∇w(x− (1 − θ)n),n⟩ dθ.

The gradient ∇w of w is easily computed as:

∂

∂xj
w(x) = − dxj

∥x∥2 (1 + ∥x∥2)
d+1 .
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Thus,

∥∇w(x)∥2 =
d

(1 + ∥x∥2)
d+1 .

Therefore for x with ∥x∥2 > ∥n∥ we have

|w(x) −w(x− n)| ≤ d ∥n∥2 max
0≤θ≤1

(1 + ∥x− (1 − θ)n)∥2)
−d−1

≤ d ∥n∥2
(1 + ∥x∥2 − ∥n∥2)

d+1 ,

hence |w(x) −w(x− n)|x∈Zd is an element of ℓ d
d+1 ,∞.

Theorem 5.4.2. For n ∈ Zd, let Un denote the operator on ℓ2(Zd) of translation by n.

Assume that H = H0 +MV is a Hamiltonian operator such that the density of states exists

for both H and UnHU∗
n. Then both measures are equal.

Proof. For any f ∈ Cc(R), we have f(UnHU∗
n) = Unf(H)U∗

n. Combining this with the

tracial property of the Dixmier trace gives

Trω(f(UnHU∗
n)Mw) = Trω(f(H)U∗

nMwUn).

By Lemma 5.4.1, we have U∗
nMwUn−Mw ∈ L d

d+1 ,∞ ⊂ L1. Since the Dixmier trace vanishes

on trace-class operators, it follows that Trω(f(UnHU∗
n)Mw) = Trω(f(H)Mw). Combining

this with the Dixmier trace formula for the density of states, Theorem 5.0.1, completes

the proof.

Via identical reasoning, we also have the following abstract assertion:

Theorem 5.4.3. Let (X, dX) be an infinite discrete metric space and w be a function

such that these satisfy the assumptions of Theorem 5.0.1, let γ be an isometry of X, and

let Uγδp = δγ(p) be the corresponding unitary operator on ℓ2(X). Assume that w−w ◦ γ ∈

(ℓ1,∞)0(X). Then

lim
R→∞

1
|B(x0,R)|

∑
dX (p,x0)≤R

⟨δp,Tδp⟩ = lim
R→∞

1
|B(x0,R)|

∑
dX (p,x0)≤R

⟨δp,U∗
γTUγδp⟩,

provided both limits exist.
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5.4.2 Ergodic operators

5.4.2 Ergodic operators

The following results are direct consequences of the translation equivariance of the DOS

measure and therefore could be derived without help of Theorem 5.0.1. However, the

Dixmier trace formula provides a different approach.

Let (Ω, Σ, P) be a probability space, and let Γ be a discrete amenable group of isometries

of the metric space X from Theorem 5.0.1. We assume that there is a representation of Γ

as automorphisms of Ω:

γ ∈ Γ 7→ αγ ∈ Aut(Ω).

It is assumed that the action α is ergodic, in the sense that:

1. For every γ ∈ Γ, the automorphism αγ is measure preserving;

2. If E ⊆ Ω is invariant under every αγ , then P(E) = 0 or P(Ω \E) = 0.

We will use a generalisation of Birkhoff’s ergodic theorem, obtained by Lindenstrauss [Lin01,

Theorem 1.3]. This uses the concept of a Følner sequence, we give the definition as it is

used for discrete groups.

Definition 5.4.4. Let Γ be a discrete group, and let {Fn}∞
n=0 be a sequence of subsets of

Γ.

1. If for every finite subset K ⊆ Γ and every δ > 0, there exists N sufficiently large

such that if n > N , we have for all k ∈ K

|Fn ∆ kFn| ≤ δ|Fn|,

then {Fn}∞
n=0 is called a Følner sequence.

2. If {Fn}∞
n=0 satisfies (1) and furthermore for some C ≥ 1 and for every n ≥ 0, we

have: ∣∣∣∣∣∣
⋃
k≤n

F−1
k Fn+1

∣∣∣∣∣∣ ≤ C|Fn+1|,

then {Fn}∞
n=0 is called a tempered Følner sequence.
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The existence of a Følner sequence in this sense is equivalent with the condition of Γ being

discrete and amenable [Lub94, p. 23]. Also note that any Følner sequence has a tempered

subsequence [Lin01, Proposition 1.4].

Lindenstrauss’ pointwise ergodic theorem [Lin01, Theorem 1.3] implies that if {Fn}∞
n=0 is

a tempered Følner sequence, then for all f ∈ L1(Ω) we have:

lim
n→∞

1
|Fn|

∑
γ∈Fn

f(αγω) = E(f). (5.13)

for almost every ω ∈ Ω.

For γ ∈ Γ, let Uγ denote the induced unitary operator acting on ℓ2(X) by:

Uγδp := δγ(p), p ∈ X, γ ∈ Γ.

We will consider strongly measurable random operators T ∈ L1(Ω,B(ℓ2(X)) which are

compatible with α in the sense that:

UγT (ω)U
∗
γ = T (αγω), γ ∈ Γ (5.14)

for almost all ω ∈ Ω.

Proposition 5.4.5. Let T ∈ L1(Ω,B(ℓ2(X)) be a random operator satisfying (5.14) with

respect to a group of isometries Γ of X, which admits a tempered Følner sequence {Fn}∞
n=0

of finite subsets, and with respect to an ergodic action α of Γ on Ω. If there exists a

function w : X → R+ satisfying the assumptions of Theorem 5.0.1 such that

w ◦ γ −w ∈ (ℓ1,∞)0(X)

for every γ ∈ Γ then the density of states of T (ξ) is non-random, in the sense that if the

limit:

lim
R→∞

Tr(T (ξ)MχB(x0,R)
)

|B(x0,R)|
exists for almost every ξ, then the limit is almost surely constant in ξ.
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Proof. This is an application of the Lindenstrauss version of Birkhoff’s ergodic theorem.

The assumption on w and Theorem 5.4.3 imply that:

Trω(T (ξ)Mw) = Trω(T (αγξ)Mw), γ ∈ Γ. (5.15)

Therefore for every n ≥ 0 we have:

Trω(T (ξ)Mw) =
1

|Fn|
∑
γ∈Fn

Trω(T (αγξ)Mw).

Note that:

| Trω(T (ξ)Mw)| ≤ ∥T (ξ)∥∞∥w∥1,∞.

Hence the function ξ 7→ Trω(T (ξ)Mw) is integrable, due to our assumption that T ∈

L1(Ω,B(ℓ2(X))), and the measurability of ξ 7→ Trω(T (ξ)Mw) follows from the strong

measurability of ξ 7→ T (ξ) and the norm continuity of T 7→ Trω(TMw). Hence, Linden-

strauss’ ergodic theorem (5.13) applies to this function, and hence for almost every ξ ∈ Ω

we have:

lim
n→∞

1
|Fn|

∑
γ∈Fn

Trω(T (αγξ)Mw) = E(Trω(TMw)).

The right hand side has no dependence on ξ ∈ Ω, and hence the limit is almost surely

constant in ξ. Due to (5.15), this implies that Trω(T (ξ)Mw) is almost surely constant

in ξ. Alluding to Theorem 5.0.1, we conclude that the density of states of T (ξ) is almost

surely constant in ξ.

In an alternative direction of inquiry, the condition (5.14) can be used in some circum-

stances to imply the existence of the density of states. For simplicity, we state the following

condition for X = Zd.

Theorem 5.4.6. Let T ∈ L1(Ω,B(ℓ2(Zd))) be a linear operator which satisfies (5.14)

with respect to the action of Zd on itself by translations and an ergodic action α of Zd on

Ω. Then for almost every ξ ∈ Ω there exists the limit:

lim
R→∞

1
|B(0,R)|

∑
|n|≤R

⟨δn,T (ξ)δn⟩ = E(⟨δ0,Tδ0⟩).
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Proof. We have that Unδ0 = δn, and therefore:

⟨δn,T (ξ)δn⟩ = ⟨δ0,U∗
nT (ξ)Unδ0⟩ = ⟨δ0,T (α−nξ)δ0⟩.

It follows that:

1
|B(0,R)|

∑
|n|≤R

⟨δn,T (ξ)δn⟩ = 1
|B(0,R)|

∑
|n|≤R

⟨δ0,T (αnξ)δ0⟩.

By our assumption on T , the function ξ 7→ ⟨δ0,T (ξ)δ0⟩ belongs to L1(Ω). Note that the

sequence FN := B(0,N) is a tempered Følner sequence in Zd, and hence Lindenstrauss’

ergodic theorem (5.13) implies that for almost every ξ ∈ Ω there exists the limit

lim
N→∞

1
|B(0,N)|

∑
n∈B(0,N)

⟨δ0,T (αnξ)δ0⟩ = E(⟨δ0,T (ξ)δ0⟩).

Note that the result also holds if the limit over balls {B(0,N)}N≥0 is replaced with any

other tempered Følner sequence, such as cubes {[−N ,N ]d}N≥0. The limit in every case

is E(⟨δ0,T (ξ)δ0⟩), and hence does not depend on the choice of sequence of sets.

Theorem 5.4.7. Let H(ξ) = H0 + Vξ(x) be a random operator on ℓ2(Zd), where H0

is a Zd-translation invariant difference operator and Vξ, ξ ∈ Ω, an iid random bounded

function. Then there exists a set Ω0 ⊂ Ω of probability 1, such that for any f ∈ Cc(R)

and for any ξ ∈ Ω0 there exists the limit:

lim
R→∞

1
|B(0,R)|

∑
|n|≤R

⟨δn, f(Hξ)δn⟩ = E(⟨δ0, f(Hξ)δ0⟩). (5.16)

Proof. Proof follows a standard argument, see e.g. [AW15, Chapter 3]. Let Σ be a count-

able dense subset of Cc(R). The random operator H(ξ) is ergodic and obeys (5.14) so

Theorem 5.4.6 is applicable. By this theorem, for every f ∈ Σ there exists a full set

Ωf ⊂ Ω such that (5.16) holds for all ξ ∈ Ωf . Define a full set Ω0 =
⋂
f∈Σ Ωf , so for

every f ∈ Σ and every ξ ∈ Ω0 the equality (5.16) holds. Choose any g ∈ Cc(R) and let

f1, f2, . . . ∈ Σ be such that fn → g in uniform topology. Let ε > 0. Further we proceed by

a standard ε/3-trick. Let N ∈ N be such that for all n ≥ N ∥fn − g∥∞ < ε/3. For fN
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5.4.2 Ergodic operators

the equality (5.16) holds for any ξ ∈ Ω0. Let R0 > 0 be such that for all R > R0 and all

ξ ∈ Ω0 ∣∣∣∣∣∣ 1
|B(0,R)|

∑
|n|≤R

⟨δn, fN (Hξ)δn⟩ − E(⟨δ0, fN (Hξ)δ0⟩)

∣∣∣∣∣∣ < ε/3.

Then for all R > R0 and ξ ∈ Ω0 we have∣∣∣∣ 1
|B(0,R)|

∑
|n|≤R

⟨δn, g(Hξ)δn⟩ − E(⟨δ0, g(Hξ)δ0⟩)
∣∣∣∣

≤

∣∣∣∣∣∣ 1
|B(0,R)|

∑
|n|≤R

⟨δn, [g(Hξ) − fN (ξ)]δn⟩

∣∣∣∣∣∣
+

∣∣∣∣ 1
|B(0,R)|

∑
|n|≤R

⟨δn, fN (Hξ)δn⟩ − E(⟨δ0, fN (Hξ)δ0⟩)
∣∣∣∣

+

∣∣∣∣E(⟨δ0, [fN (Hξ) − g(Hξ)]δ0⟩)
∣∣∣∣

< ε,

where the last inequality follows from the triangle, Schwartz and ∥f(H) − g(H)∥ ≤

∥f − g∥∞ < ε/3 inequalities.
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Chapter 6

The density of states on manifolds

I wholeheartedly congratulate you and wish you

to get better and work much harder.

Fedor Sukochev

This chapter is an adaptation of [HM24a], joint work with Edward McDonald. Section 6.6

appeared in the preprint version of that paper [HM23], but was omitted from the pub-

lished article. For the content of this chapter, we are grateful to Teun van Nuland, Fedor

Sukochev, and the anonymous referees of [HM24a] for helpful comments. The main re-

sults in this chapter are a Dixmier trace formula for the density of states on manifolds in

Theorem 6.0.3 and a Dixmier trace formula for Roe’s index on open manifolds in Theo-

rem 6.4.5.

Like Chapter 5, this chapter revolves around a Dixmier trace formula for the density of

states (DOS). The general form of this formula can be stated for a metric space (X, d)

with a Borel measure, a weight w : X → C such that Mw ∈ L1,∞, and a basepoint x0 ∈ X.

As explained in the introduction of Chapter 5 — see also Section 1.5 — the Dixmier trace

formula for the DOS that we study is the equality of the two Borel measures associated
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with a self-adjoint operator H on L2(X) and an extended limit ω ∈ ℓ∗∞,

Trω(f(H)Mw) =
∫

R
f dν1, f ∈ Cc(R), (6.1)

and

lim
R→∞

1
|B(x0,R)| Tr(f(H)MχB(x0,R)

) =
∫

R
f dν2, f ∈ Cc(R), (6.2)

where the existence of the measure ν2, the density of states, has to be assumed. The

equality of these measures up to a constant implies that when the DOS exists, the measure

ν1 does not depend on ω.

Whereas Chapter 5 (based on [Aza+22]) proves this result for the case where (X, d) is

a discrete metric space with certain additional properties, here we will stay closer to the

setting in the paper [AMSZ20] where this formula was first proven for X = Rd, d ≥ 2,

w(x) = (1 + |x|2)− d
2 , and H = −∆ +MV with V ∈ L∞(Rd) real-valued.

Namely, we will consider (oriented, connected) non-compact Riemannian manifolds of

bounded geometry (the definition follows below in Section 6.1). On these manifolds, the

operators H that we will take into account are self-adjoint lower-bounded uniformly elliptic

differential operators of order two. Additionally, like in the discrete case in Chapter 5,

we require the volume of the balls |B(x0,R)| to grow in a sub-exponential and regular

manner, specified in Definition 6.0.1.

Let us discuss these conditions. The DOS has been studied before on manifolds, usually in

the setting where for the non-compact Riemannian manifoldM one picks a discrete, finitely

generated group Γ of isometries of (M , g) which acts freely and properly discontinuously

on M such that the quotient M/Γ is compact, and the operator studied is a random

Schrödinger operator [AS93; LPPV08; LPV04; PV02; Ves08]. It is not difficult to see that

the existence of such a group is a stronger condition than requiring bounded geometry,

this will be explicitly proven in Proposition 6.1.7.

Furthermore, in each of the cited papers a recurring assumption is that the group of

isometries Γ is amenable. This is equivalent with the existence of an expanding family of
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bounded domains Dj ⊂ M such that

lim
j→∞

|∂hDj |
|Dj |

= 0, ∀h > 0,

where ∂hDj := {x ∈ Dj : d(x, ∂Dj) ≤ h} [AS93]. This is a weaker condition than what we

will require of the growth of the balls B(x0,R) specified in Definition 6.0.1 below. In fact,

for these manifolds to satisfy our assumptions, it is necessary that Γ has subexponential

growth which implies amenability. In Section 6.5 a more detailed analysis of this co-

compact setting with a random Schrödinger operator will follow.

Let (M , g) be a d-dimensional Riemannian manifold, and let dg be the distance function on

M induced by the Riemannian metric. The Riemannian volume of the closed ball B(x0, r)

is denoted by |B(x0, r)|. Its boundary, ∂B(x0, r), is a (d − 1)-dimensional Hausdorff-

measurable subset of M , and as such we can talk about its volume, calculated with respect

to its inherited Riemannian metric. This d− 1-dimensional volume we will also denote as

|∂B(x0, r)|. In fact, it then holds that (see Section 6.1.2)

d

dr
|B(x0, r)| = |∂B(x0, r)|.

What we require of our manifolds is that both |B(x0, r)| and |∂B(x0, r)| grow sufficiently

slowly and regularly. Namely, we will ask that the ratios |∂B(x0,r)|
|B(x0,r)| and

d
dr

|∂B(x0,r)|
|∂B(x0,r)| vanish

as R → ∞ in the following way.

Definition 6.0.1 (Property (D)). Let (M , g) be a non-compact Riemannian manifold

of bounded geometry. It is said to have Property (D) if r 7→ V (r) := |B(x0, r)| is in

C2(R≥0),
V ′(r)

V (r)
∈ L2(R≥1), (6.3)

and

lim
r→∞

V ′′(r)

V ′(r)
= 0. (6.4)

Lemma 6.3.11 below gives in particular that Property (D) implies that V ′(r)
V (r) → 0 as r → ∞

(which is not immediate from the requirement that it be in L2(R≥1)). If a function

f ∈ C1(R) satisfies limx→∞
f ′(x)
f (x) = 0, then log f(x) = o(x) and hence f(x) = eo(x).
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Therefore, if the manifoldM satisfies Property (D), then necessarily both |B(x0, r)| = eo(r)

and |∂B(x0, r)| = eo(r). A quick calculation shows that Property (D) still admits volume

growth of the order |B(x0, r)| = exp(r 1
2 −ε), and it is not difficult to see that Property

(D) is satisfied for Euclidean spaces. The conditions listed mostly serve to prevent erratic

behaviour of the growth. Observe the similarity in this sense to Property (C) in Chapter 5

which required for discrete metric spaces X
|B(x0, rk+1)|
|B(x0, rk)|

→ 1, k → ∞,

where {rk}∞
k=0 is the set {d(y,x0) : y ∈ X} ordered in increasing manner.

Finally, let us specify the class of operators for which the main theorem is formulated.

The following definition is essentially the same as [Kor91] and the C∞-bounded differential

operators defined in [Shu92, Appendix 1].

Definition 6.0.2. A differential operator P on a d-dimensional Riemannian manifold

M of bounded geometry is called a uniform differential operator (of order m) if it can be

expressed in normal coordinates in a neighbourhood of each point x ∈ M as

P =
∑

|α|≤m
aα,x(y)∂

α
y ,

and for all multi-indices β we have∣∣∣∂βy aα,x(0)
∣∣∣ ≤ Cα,β, |α| ≤ m.

Following the notation of [Kor91], we denote this by P ∈ BDm(M).

Furthermore, let σx(y, ξ) = ∑
|α|=m aα,x(y)(iξ)α be the principal symbol of P near x. We

say that P ∈ BDm(M) is uniformly elliptic, denoted P ∈ EBDm(M), if there exists ε > 0

such that

|σx(0, ξ)| ≥ ε |ξ|m , ξ ∈ Rd,x ∈ M .

A similar definition applies to operators acting between sections of vector bundles of

bounded geometry; see [Shu92].

Having discussed all necessary details, we can now formulate the main theorem of this

chapter.
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Theorem 6.0.3. Let (M , g) be a non-compact Riemannian manifold of bounded geometry

with Property (D). Let P ∈ EBD2(M) be self-adjoint and lower-bounded, and let w be the

function on M defined by

w(x) =
1

1 + |B(x0, dg(x,x0))|
, x ∈ M .

Then f(P )Mw is an element of L1,∞ for all compactly supported functions f ∈ Cc(R). If

P admits a density of states νP , we have for all extended limits ω ∈ ℓ∗∞

Trω(f(P )Mw) =
∫

R
f dνP , f ∈ Cc(R).

Observe that Euclidean space is a manifold of bounded geometry satisfying Property (D),

and Schrödinger operators H = −∆+MV with smooth bounded potential V are operators

of the required class. Therefore, besides the smoothness assumption on V , the main result

in this paper is a generalisation of [AMSZ20].

Whereas the proofs in [AMSZ20] are based on delicate singular value estimates particular

to Euclidean space, and the ones in [Aza+22] (i.e. Chapter 5) are based on heavy real

analysis, here we will prove a statement in abstract operator theory. It is a significant

generalisation of [AMSZ20, Theorem 5.7]. In Section 6.6, we will make a comparison

between this method and the proof in Chapter 5.

Theorem 6.0.4. Let W and P be linear operators, such that P is self-adjoint and lower-

bounded and W is positive and bounded. Assume that for every t > 0 we have

1. exp(−tP )W ∈ L1,∞,

2. exp(−tP )[P ,W ] ∈ L1.

Then, for every extended limit ω,

Trω(e−tPW ) = lim
ε→0

εTr(e−tPχ[ε,∞)(W )), t > 0.

whenever the limit on the right hand side exists.
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As an application of the Dixmier trace formula for the DOS, Theorem 6.0.3, we will look

at Roe’s index theorem on open manifolds [Roe88]. Roe’s index theorem is one approach

of many that extends Atiyah–Singer’s index theorem [AS63] to non-compact manifolds,

namely non-compact manifolds of bounded geometry that admit a regular exhaustion. For

the precise definition we refer to [Roe88, Section 6], but for this introduction it suffices to

know that Property (D) is a stronger assumption.

Given a compact manifoldM with two vector bundles E,F → M and an elliptic differential

operator D : Γ(E) → Γ(F ), the local index formula equates the Fredholm index of D to

the integral of a differential form given by topological data denoted here simply by I(D),

Ind(D) =
∫
M

I(D). (6.5)

A special case of the index formula can be proved with the McKean–Singer formula, which

in this case states that

Ind(D) = Tr(ηe−tD2
), t > 0,

where η is the grading operator on the bundle E ⊕ F → M , and D is the self-adjoint

operator acting on Γ(E ⊕ F ) by the formula

D =

 0 D∗

D 0

 .

If M is not compact, neither side of (6.5) is well-defined in general. In the setting of a

non-compact Riemannian manifold M of bounded geometry with a regular exhaustion,

and with a graded Clifford bundle S → M also of bounded geometry (see Section 6.4),

which comes with a natural first-order elliptic differential operator, the Dirac operator

D : Γ(S+) → Γ(S−), Roe modifies both sides of equation (6.5) as follows. Defining a linear

functional m on bounded d-forms via an averaging procedure, the right-hand side simply

becomes m(I(D)). For the left-hand side, Roe defines an algebra of uniformly smoothing

operators U−∞, and shows that elliptic operators are invertible modulo U−∞. Recall that

for operators that are invertible modulo compact operators (Fredholm operators), the

Fredholm index is an element of the K-theory group K0(K((H)) = Z [Weg93] (recall
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that K(H) are the compact operators). In this case, we can similarly define an abstract

index of an elliptic operator D as an element of K0(U−∞), by observing that U−∞ forms

an ideal in what Roe defines as uniform operators U . Furthermore, using the functional

m one can define a trace τ on U−∞. This trace can be extended to a trace on the matrix

algebras Mn(U+
−∞) (with U+

−∞ denoting the unitisation of U−∞) by putting τ (1) = 0 when

passing to the unitisation, and then tensoring with the usual trace on Mn(C). The tracial

property gives that this map descends to a map called the dimension-homomorphism

dimτ : K0(U−∞) → R. These ingredients give Roe’s index theorem:

dimτ (Ind(D)) = m(I(D)). (6.6)

The nature of the averaging procedure that Roe develops is such that if D2 admits a

density of states, Theorem 6.0.3 leads to a Dixmier trace reformulation of the analytical

index dimτ (Ind(D)). In Section 6.4 we prove

dimτ (Ind(D)) = Trω(η exp(−tD2)Mw), t > 0,

where η is the grading on S.

6.1 Preliminaries

6.1.1 Operator theory

We recall some facts about sums of left-disjoint families of operators, and prove an estimate

for their Lp-norm and Lp,∞-norm. A family {Tj}∞
j=0 of bounded linear operators on a

Hilbert space H is left-disjoint if T ∗
j Tk = 0 for all j ̸= k.

Given a sequence {Tj}∞
j=0 of bounded linear operators on H, let

∞⊕
j=0

Tj

denote the operator on H ⊗ ℓ2(N) given by
∞∑
j=0

Tj ⊗ eje
∗
j
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where eje∗
j is the rank 1 projection onto the orthonormal basis element ej ∈ ℓ2.

Note that

µ

 ∞⊕
j=0

Tj

 = µ

 ∞⊕
j=0

diag(µ(Tj))

 .

To put it differently, the singular value sequence of the direct sum⊕∞
j=0 Tj is the decreasing

rearrangement of the sequence indexed by N2 given by

{µ(k,Tj)}∞
j,k=0.

By definition, we have ∥T∥p1,p2 = ∥µ(T )∥ℓp1,p2
. Therefore,∥∥∥∥∥∥

∞⊕
j=0

Tj

∥∥∥∥∥∥
p1,p2

= ∥{µ(k,Tj)}j,k≥0∥ℓp1,p2 (N
2).

Now let q > 0. We have for each j that µ(k,Tj) ≤ (k+ 1)− 1
q ∥Tj∥q,∞. Therefore,∥∥∥∥∥∥

∞⊕
j=0

Tj

∥∥∥∥∥∥
p1,p2

≤ ∥{(1 + k)− 1
q ∥Tj∥q,∞}j,k≥0∥ℓp1,p2 (N

2).

Lemma 4.3 of [LSZ20a] implies that if q is sufficiently small, then there exists a constant

Cp1,p2,q such that for any sequence {xj}∞
j=0 we have

∥{(1 + k)− 1
q xj}j,k≥0∥ℓp1,p2 (N

2) ≤ Cp1,p2,q∥{xj}∞
j=0∥ℓp1,p2

.

Taking xj = ∥Tj∥q,∞ and sufficiently small q (depending on p1, p2) we have∥∥∥∥∥∥
∞⊕
j=0

Tj

∥∥∥∥∥∥
p1,p2

≤ Cp1,p2,q∥{∥Tj∥q,∞}∞
j=0∥p1,p2 . (6.7)

Combining [LSZ20a, Proposition 2.7, Lemma 2.9] gives the following result.

Lemma 6.1.1. Let 0 < p < 2, and let {Tj}∞
j=0 be a left-disjoint family of bounded linear

operators. There exist constants Cp, C ′
p such that∥∥∥∥∥∥

∞∑
j=0

Tj

∥∥∥∥∥∥
p,∞

≤ Cp

∥∥∥∥∥∥
∞⊕
j=0

Tj

∥∥∥∥∥∥
p,∞

;

∥∥∥∥∥∥
∞∑
j=0

Tj

∥∥∥∥∥∥
p

≤ C ′
p

∥∥∥∥∥∥
∞⊕
j=0

Tj

∥∥∥∥∥∥
p

.
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A combination of (6.7) and Lemma 6.1.1 immediately yields the following:

Corollary 6.1.2. Let 0 < p < 2, and let {Tj}∞
j=0 be a left-disjoint family of operators.

There exist q, q′ > 0 (depending on p) and constants Cp,q,C ′
p,q′ > 0 such that∥∥∥∥∥∥

∞∑
j=0

Tj

∥∥∥∥∥∥
p,∞

≤ Cp,q
∥∥∥{∥Tj∥q,∞}∞

j=0

∥∥∥
ℓp,∞

;

∥∥∥∥∥∥
∞∑
j=0

Tj

∥∥∥∥∥∥
p

≤ C ′
p,q′

∥∥∥{∥Tj∥q′,∞}∞
j=0

∥∥∥
ℓp

.

Remark 6.1.3. For p = 1, we can take any 0 < q, q′ < 1.

6.1.2 Preliminaries on manifolds

All manifolds in this chapter are smooth, oriented, non-compact and connected unless

stated otherwise.

Definition 6.1.4. Let (M , g) be a Riemannian manifold. The injectivity radius i(x) at a

point x ∈ M is defined as

i(x) := sup{R ∈ R≥0 : expx |B(0,R) is a diffeomorphism},

where expx is the exponential map at x and B(0,R) ⊆ TxM is the metric ball with radius

R centered around the origin. The injectivity radius of the manifold M is defined as

ig := inf
x∈M

i(x).

It is a theorem that the injectivity radius map

i : M → (0, ∞]

x 7→ i(x)

is continuous [Sak96, Proposition III.4.13].

Definition 6.1.5. A Riemannian manifold (M , g) has bounded geometry if the injec-

tivity radius ig satisfies

ig > 0,
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6.1.2 Preliminaries on manifolds

and the Riemannian curvature tensor R and all its covariant derivatives are uniformly

bounded.

This is the definition as in [Kor91, Definition 1.1], [Eic09, Chapter II] and [Eic07, Chapter

3]. Every open manifold admits a metric of bounded geometry [Gre78].

As is well-known (see e.g. [Kor91, Lemma 2.4]), bounded geometry implies that there

exists r0 > 0 and a countable set {xj}∞
j=0 of points in M such that:

1. M =
⋃∞
j=0B(xj , r0);

2. each ball B(xj , r0) is a chart for the exponential normal coordinates based at xj ;

3. the covering {B(xj , r0)}∞
j=0 has finite order, meaning that there exists N such that

each ball intersects at most N other balls;

4. supj |B(xj , r0)| < ∞, recall that | · | indicates the volume;

5. there exists a partition of unity {ψj}∞
j=0 subordinate to {B(xj , r0)} such that for

every α we have supj,x |∂αψj(x)| < ∞, where ∂α is taken in the exponential normal

coordinates of B(xj , r0).

Without loss of generality, r0 can be taken smaller or equal to 1 (see [Kor91, Lemma 2.3]).

We will refer to the scale of Sobolev spaces {Hs(M)}s∈R defined over M as

Hs := dom(1 − ∆g)
s
2

∥·∥s

,

with ∥ξ∥s := ∥(1 − ∆g)
s
2 ξ∥L2(M), as in Section 1.2 and Chapter 2, see also [Kor91, Sec-

tion 3] or [GS13]. We will make use of the fact that if P ∈ BDm(M), then P ∈

opm(1 − ∆g)
1
2 , i.e. P defines a bounded linear operator from Hs+m(M) to Hs(M) for

every s ∈ R.

Remark 6.1.6. It follows from the bounded geometry assumption that there exist constants

c,C > 0 such that for every x ∈ M and R > 0 we have

|B(x,R)| ≤ C exp(cR).
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Note that for almost every r > 0, we have

d

dr
|B(x, r)| = |∂B(x, r)|.

See [Cha06, Proposition III.3.2 & Proposition III.5.1].

A standard example of a manifold of bounded geometry is a covering space of a compact

manifold. The following is well-known, but lacking a reference we supply a proof for the

reader’s convenience.

Proposition 6.1.7. Let (M , g) be a complete d-dimensional Riemannian manifold. Let Γ

be a discrete, finitely generated subgroup of the isometries of (M , g) which acts freely and

properly discontinuously on M such that the quotient M/Γ is a compact (d-dimensional)

Riemannian manifold. Then M has bounded geometry.

Proof. Since Γ acts cocompactly on M , there exists a compact set L ⊆ M such that⋃
γ∈Γ γL = M . Indeed, since the open balls B(x, 1),x ∈ M project onto an open cover

of M/Γ, there exists a finite collection {B(xi, 1)}Ni=1 that projects onto M/Γ. Defining

L :=
⋃N
i=1B(xi, 1) gives the claimed compact set L.

Set

iL := inf
x∈L

i(x),

where i(x) is the injectivity radius at the point x. Since the injectivity radius is a con-

tinuous function on M , i(x) > 0 for all x ∈ M , and L is compact, it follows that iL > 0.

Since Γ acts by isometries, for any γ ∈ Γ we have i(γx) = i(x), see for example the proof

of [Sak96, Theorem III.5.4]. Therefore, infx∈M i(x) = iL > 0.

Next, since the curvature tensor R is smooth, clearly R and all its covariant derivatives

are bounded on L. Let Φ : M → M be the isometry by which γ ∈ Γ acts. Then for all

x ∈ M Φ∗
x : TxM → TΦ(x)M is an isomorphism, and by [Sak96, p. 41],

Φ∗
x(∇ξη) = ∇Φ∗

xξΦ
∗
xη,

Φ∗
x(R(η, ξ)ζ) = R(Φ∗

xη, Φ∗
xξ)Φ

∗
xζ,
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where ξ, η, ζ ∈ TxM . Combine the facts that R and its covariant derivatives are bounded

on L, that ⋃γ∈Γ γL = M , and that isometries preserve R and taking covariant deriva-

tives in the above manner, and we can conclude that R and its covariant derivatives are

uniformly bounded on M .

Remark 6.1.8. A non-compact Riemannian manifold of bounded geometry has infinite

volume. This can be checked easily via the covering M =
⋃∞
j=0B(xj , r0) below Defini-

tion 6.1.5, and the observation that infj |B(xj , r0)| > 0 [Kod88].

6.2 Proof of Theorem 6.0.4

Part of the proof in [AMSZ20] used the identity

lim
s↓1

(s− 1)
∫

Rd
F (x)(1 + |x|2)− s

2 dx = lim
R→∞

R−d
∫
B(0,R)

F (x) dx (6.8)

for any bounded measurable function F on Rd such that the right hand side exists.

Equation (6.8) can be generalised in the following manner. The proof is essentially the

same as [AMSZ20, Lemma 6.1].

Lemma 6.2.1. Let A and B be bounded linear operators, B ≥ 0, such that ABs ∈ L1 for

every s > 1. Then

lim
s↓1

(s− 1)Tr(ABs) = lim
ε→0

εTr(Aχ[ε,∞)(B))

whenever the limit on the right exists.

Proof. Writing Bs =
∫ ∥B∥∞

0 λs dEB(λ), λs = s
∫ λ

0 r
s−1 dr and applying Fubini’s theorem

yields

Tr(ABs) = s

∫ ∥B∥∞

0
rs−1Tr(Aχ[r,∞)(B)) dr.

Assume without loss of generality that ∥B∥∞ = 1. Writing F (r) := Tr(Aχ[r,∞)(B)) our

assumption is that

F (r) ∼ c

r
, r → 0,
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and

Tr(ABs) = s

∫ 1

0
rs−1F (r) dr.

Let ε > 0, and choose R > 0 sufficiently small such that if 0 < r < R then

|rF (r) − c| < ε.

We write Tr(ABs) − c
s−1 as

Tr(ABs) − c

s− 1 = c+ s

∫ 1

0
rs−1F (r) − crs−2 dr.

Therefore

|Tr(ABs) − c

s− 1 | ≤ |c| + s

∫ 1

0
rs−2|rF (r) − c| dr ≤ |c| + s

∫ 1

R
rs−2|rF (r) − c| dr+ sε

s− 1.

It follows that

|(s− 1)Tr(ABs) − c| = O(s− 1) + sε, s ↓ 1.

Since ε is arbitrary, this completes the proof.

We will make use of the following theorem, which is [LMSZ23, Theorem 1.3.20].

Theorem 6.2.2. Let A and B be positive bounded linear operators such that [B,A 1
2 ] ∈ L1

and AB ∈ L1,∞. If

∥A
1
2Bs∥1 = o((s− 1)−2), s ↓ 1

then for every extended limit ω we have

Trω(AB) = lim
s↓1

(s− 1)Tr(ABs)

if the limit exists.

Hence, if [B,A 1
2 ] ∈ L1 and ∥A

1
2Bs∥1 = o((s− 1)−2), then by Lemma 6.2.1

Trω(AB) = lim
ε→0

εTr(Aχ[ε,∞)(B))

whenever the limit on the right exists.

174



6.2. PROOF OF THEOREM 6.0.4

Recall the Araki–Lieb–Thirring inequality [Kos92]

∥AB∥rr,∞ ≤ e∥ArBr∥1,∞, r > 1 (6.9)

and the numerical inequality

∥X∥∞,1 =
∞∑
k=0

µ(k,X)

k+ 1 ≤ ∥X∥q,∞ζ(1 +
1
q
), (6.10)

obtained by simply writing out the definitions. Here ζ is the Riemann zeta function, and

it obeys ζ(1 + 1
q ) ∼ q as q → ∞.

Corollary 6.2.3. Let A and B be positive bounded linear operators such that

1. [A
1
2 ,B] ∈ L1,

2. A
1
4B ∈ L1,∞.

Then for every extended limit ω we have

Trω(AB) = lim
s↓1

(s− 1)Tr(ABs)

if the limit exists.

Proof. Let 1 < s < 2. We have

∥A
1
2Bs∥1 ≤ ∥[A

1
2 ,B]Bs−1∥1 + ∥BA

1
2Bs−1∥1 ≤ ∥[A

1
2 ,B]∥1∥B∥s−1

∞ + ∥BA
1
4 ∥1,∞∥A

1
4Bs−1∥∞,1,

where we have used the inequality

∥TS∥1 ≤ 2∥T∥1,∞∥S∥∞,1, T ∈ L1,∞,S ∈ L∞,1,

which can easily be checked via the definitions of these quasi-norms and the inequality

µ(2k,TS) ≤ µ(k,T )µ(k,S).

By the numerical inequality (6.10) above

∥A
1
4Bs−1∥∞,1 ≲ (s− 1)−1∥A

1
4Bs−1∥ 1

s−1 ,∞.
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Since s < 2, we have 1
s−1 > 1, and hence the Araki–Lieb–Thirring inequality (6.9) delivers

∥A
1
4Bs−1∥

1
s−1

1
s−1 ,∞ ≤ e∥A

1
4(s−1)B∥1,∞ ≤ e∥A

1
4 ∥

2−s
s−1
∞ ∥A

1
4B∥1,∞.

This verifies the assumptions of Theorem 6.2.2.

In our case, we have an operator P which is self-adjoint and lower-bounded, which means

exp(−tP ) is positive and bounded for all t > 0, and we takeB = W . Then the assumptions

become

[exp(−tP ),W ] ∈ L1, exp(−tP )W ∈ L1,∞ (6.11)

for every t > 0.

The former condition can be modified to one which is easier to verify in geometric examples.

Lemma 6.2.4 (Duhamel’s formula). Let P be a lower-bounded self-adjoint operator on a

Hilbert space H, and let W be a bounded operator. Then

[exp(−tP ),W ] = −
∫ t

0
exp(−sP )[P ,W ] exp(−(t− s)P ) ds.

Proof. The method of proof is standard, see for example [ACDS09, Lemma 5.2]. Define

F : [0, t] → B(H) by F (s) = exp(−sP )W exp(−(t− s)P ). Since P is lower-bounded,

exp(−sP ) is bounded for all s ∈ [0, t]. Hence the derivative of F (s) in the strong operator

topology is

F ′(s) = −P exp(−sP )W exp(−(t− s)P ) + exp(−sP )WP exp(−(t− s)P )

= − exp(−sP )[P ,W ] exp(−(t− s)P ),

in the sense that

lim
h→0

1
h
(F (s+ h) − F (s))ξ = F ′(s)ξ, ξ ∈ H.

Therefore, by the fundamental theorem of calculus for Banach space-valued functions, we
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can conclude that for ξ ∈ H,

[exp(−tP ),W ]ξ = (F (t) − F (0))ξ

=
∫ t

0
F ′(s)ξ ds

= −
∫ t

0
exp(−sP )[P ,W ] exp(−(t− s)P )ξ ds.

Lemma 6.2.5. Let P be a self-adjoint lower bounded linear operator and let W be a

bounded self-adjoint operator such that [P ,W ] makes sense, and

exp(−tP )[P ,W ] ∈ L1, t > 0.

Then

[exp(−tP ),W ] ∈ L1, t > 0.

Proof. By the Duhamel formula (Lemma 6.2.4),

[exp(−tP ),W ] = −
∫ t

0
exp(−sP )[P ,W ] exp(−(t− s)P ) ds

= −
∫ t

2

0
exp(−sP )[P ,W ] exp(−(t− s)P ) ds

−
∫ t

t
2

exp(−sP )[P ,W ] exp(−(t− s)P ) ds.

For 0 < s < t
2 , we have

∥ exp(−sP )[P ,W ] exp(−(t− s)P )∥1 ≤ ∥[P ,W ] exp(− t

2P )∥1

while for t
2 < s < t,

∥ exp(−sP )[P ,W ] exp(−(t− s)P )∥1 ≤ ∥ exp(− t

2 )[P ,W ]∥1.

Hence, the triangle inequality for weak integrals we have

∥[exp(−tP ),W ]∥1 ≤ t∥[P ,W ]∥1.

Combining the results of this section completes the proof of Theorem 6.0.4.
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6.3 Manifolds of bounded geometry

Let us now shift our attention to the case where we have a Riemannian manifold of bounded

geometry M and a self-adjoint, lower-bounded operator P ∈ EBD2(M).

Estimates of the form

∥Mfg(−i∇)∥p,∞ ≤ cp∥f∥p∥g∥p,∞

for p > 2 are sometimes called Cwikel-type estimates. Here, f and g are function on Rd,

see [Sim05, Chapter 4]. Similar estimates with p < 2 were obtained earlier by Birman

and Solomyak [BS69]. In particular, it follows from [Sim05, Theorem 4.5] that if f is a

measurable function on Rd then for every t > 0 and 0 < p < 2 that we have

∥Mfe
t∆∥p ≲t,p

∑
k∈Zd

∥f∥p
L∞(k+[0,1)d)

 1
p

and similarly

∥Mfe
t∆∥p,∞ ≲t,p

∥∥∥{∥f∥L∞(k+[0,1)d)

∥∥∥
p,∞

We seek similar estimates for functions f on manifolds of bounded geometry. In place of

the decomposition of Rd into cubes, Rd =
⋃d
k∈Z[0, 1)d + k, we will use the partition of

unity constructed according to Section 6.1.2.

Namely, we will show that for 0 < p < 2, we have exp(−tP )Mf ∈ Lp,∞ whenever f ∈

ℓp,∞(L∞), and exp(−tP )Mf ∈ Lp whenever f ∈ ℓp(L∞), where ℓp,∞(L∞) and ℓp(L∞)

are certain function spaces on M .

Definition 6.3.1. Let {xj}∞
j=0 and r0 be as in Section 6.1.2. Given a bounded measurable

function f on M , define

∥f∥ℓp,∞(L∞) :=
∥∥∥{∥f∥L∞(B(xj ,r0))}

∞
j=0

∥∥∥
ℓp,∞

.

and

∥f∥ℓp(L∞) :=
∥∥∥{∥f∥L∞(B(xj ,r0))}

∞
j=0

∥∥∥
ℓp

.
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Let B be an open ball in Rd such that at every point x ∈ M we have a normal coordinate

system expx ◦e : B → B(x, r0), where e is the identification of Rd with the tangent space

TxM and expx is the Riemannian exponential map [Kor91, Proposition 1.2]. Via these

maps we can, for each x ∈ M , pullback the metric g restricted to B(x, r0) to a metric gx

on B.

Definition 6.3.2. A Riemannian metric g on B can be represented uniquely by the d2

smooth functions

gij := g(∂i, ∂j) ∈ C∞(B).

Define Riemb(B) as the set of Riemannian metrics for which the functions gij extend to

smooth functions in C∞(B). We equip Riemb(B) with the topology induced by the embed-

ding Riemb(B) ⊆ (C∞(B))d
2, where we we take the usual topology on C∞(B) defined by

the seminorms

pN (f) := max
x∈B

{|∂αf(x)| : |α| ≤ N}.

The following is essentially [Eic91], see in particular the discussion below [Eic91, Theo-

rem A]. See also the related statement [Roe88, Proposition 2.4].

Proposition 6.3.3. Let (M , g) be a manifold of bounded geometry. The functions gxij
considered as a family of smooth functions parametrized by i, j and by a point x ∈ M , can

be extended to B and then lie in a bounded subset of C∞(B).

In principle the identification e of Rd with the tangent space TxM can vary from point to

point, and therefore the matrix elements gxij are not uniquely defined. However this does

not change the fact that for any given identification, the result of Proposition 6.3.3 holds.

Corollary 6.3.4. Let (M , g) be a manifold with bounded geometry, and let {B(xj , r0)}j∈N

be an open cover of M as in Section 6.1.2. The set

{gxj : j ∈ N} ⊂ Riemb(B)

is a pre-compact subset of C∞(B).
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Proof. By Proposition 6.3.3, the functions gxk
ij lie in a bounded set in C∞(B). Since the

closure of a bounded set is also bounded [Con90, Section IV.2], and since C∞(B) has the

Heine–Borel property [Rud91, Section 1.9], the assertion follows.

Given g ∈ Riemb(B), we denote ∆Dg the self-adjoint realisation of ∆g on B with Dirichlet

boundary conditions. Explicitly, ∆Dg is defined as the operator associated with the closure

of the quadratic form

qg(u, v) =
∫
B

√
|g(x)|

∑
i,j
gij(x)∂iu(x)∂jv(x) dx, u, v ∈ C∞

c (B).

Lemma 6.3.5. Let xj and gxj ∈ Riemb(B) be as in Corollary 6.3.4. We have

sup
j∈N

∥(1 − ∆Dgxj )
−1∥L d

2 ,∞(L2(B)) < ∞.

Proof. Let g be a metric on the closed unit ball B, and let cg and cG be positive constants

such that

cg

(
d∑

k=1
|ξk|2

)
≤

d∑
k,l=1

√
|g(x)|gkl(x)ξkξl ≤ Cg

(
d∑

k=1
|ξk|2

)

for all ξ ∈ Cd. We will prove that there is a constant kd such that

∥(1 − ∆Dg )
−1∥L d

2 ,∞(L2(B)) ≤ kdc
− 1

2
g . (6.12)

Since

inf
j
cgxj > 0,

(6.12) implies the result.

Let q0 denote the Dirichlet quadratic form on B. That is,

q0(u, v) :=
∑
j

∫
B
∂ju(x)∂jv(x) dx, u, v ∈ C∞

c (B).

The Dirichlet Laplacian ∆D0 on B is defined as the operator associated with the closure of

the quadratic form q0 (see e.g. [Sim15, Example 7.5.26]). By the definitions of qg, cg and

Cg we have

cgq0(u,u) ≤ qg(u,u) ≤ Cgq0(u,u), u ∈ C∞
c (B).
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It follows that the form domains of the closures of q0 and qg coincide, we denote this space

H1
0 (B). The preceding inequality implies in particular that

cg∥(1 − ∆D0 )
1
2u∥2

L2(B) ≤ ∥(1 − ∆Dg )
1
2u∥2

L2(B), u ∈ H1
0 (B).

By standard results in quadratic form theory (see e.g. [Sim15, Equation 7.5.29]), 1 − ∆Dg

defines a topological linear isomorphism from H1
0 (B) to its dual (H1

0 (B))
∗ . Therefore,

replacing u with (1 − ∆Dg )−1v for v ∈ (H1
0 )

∗, we arrive at

cg∥(1 − ∆D0 )
1
2 (1 − ∆Dg )

−1v∥2
L2(B) ≤ ∥(1 − ∆Dg )

− 1
2 v∥2

L2(B), v ∈ (H1
0 (B))∗.

Replacing v with (1 − ∆D0 )
1
2w for w ∈ L2(B) gives

∥(1 − ∆D0 )
1
2 (1 − ∆Dg )

−1(1 − ∆0)
1
2w∥2

L2(B) ≤ c−1
g ∥w∥2

L2(B).

Recall that ∥(1 − ∆D0 )− 1
2 ∥Ld,∞(L2(B)) < ∞ by standard Weyl asymptotics. Therefore,

∥(1 − ∆Dg )
−1∥L d

2 ,∞(L2(B)) ≤ ∥(1 − ∆D0 )− 1
2 ∥2

Ld,∞(L2(B))∥(1 − ∆D0 )
1
2 (1 − ∆Dg )

−1(1 − ∆0)
1
2 ∥B(L2(B))

≤ c
− 1

2
g ∥(1 − ∆D0 )− 1

2 ∥2
Ld,∞(L2(B)).

Defining kd = ∥(1 − ∆D0 )− 1
2 ∥2

Ld,∞(L2(B)) completes the proof of (6.12), and hence of the

Lemma.

Proposition 6.3.6. For all q > 0, there exists K > 0 such that

sup
j

∥Mψj
(1 − ∆)−K∥q,∞ < ∞,

where ψj is the partition of unity subordinate to {B(xj , r0)}j∈N mentioned in Section 6.1.2.

Proof. The proof is inspired by the proof of [SZ23, Lemma 3.4.8]. Let Vj : L2(M) →

L2(B, gxj ) be the partial isometry mapping ξ ∈ L2(M) to V ξ(z) = f |B(xj ,r0) ◦ expx ◦e ∈

L2(B, gxj ). Denote Vjψj := ϕj . Then, by construction,

Mψj
= V ∗

j Mϕj
Vj

and

(1 − ∆)KMψj
= V ∗

j (1 − ∆gxj )KMϕj
Vj .
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It follows that

(1 − ∆)KMψj
V ∗
j (1 − ∆Dgxj )

−KVj = V ∗
j (1 − ∆gxj )KMϕj

(1 − ∆Dgxj )
−KVj

= V ∗
j [(1 − ∆gxj )K ,Mϕj

](1 − ∆Dgxj )
−KVj + V ∗

j Mϕj
Vj

= [(1 − ∆)K ,Mψj
]V ∗
j (1 − ∆Dgxj )

−KVj +Mψj
.

Multiplying both sides by (1 − ∆)−K and rearranging gives

(1 − ∆)−KMψj
=Mψj

V ∗
j (1 − ∆Dgxj )

−KVj − (1 − ∆)−K [(1 − ∆)K ,Mψj
]V ∗
j (1 − ∆Dgxj )

−KVj .

We claim that

sup
j∈N

∥(1 − ∆)−K [(1 − ∆)K ,Mψj
]∥∞ < ∞.

For every α we have supj,x |∂αψj(x)| < ∞, where ∂α is taken in the exponential normal

coordinates of B(xj , r0), and therefore [(1 − ∆)K ,Mψj
] is a uniform differential operator

of order 2K − 1 with coefficients that are uniform in j. Using [Kor91, Theorem 3.9], it

follows that [(1 − ∆)K ,Mψj
] is a bounded operator from L2(M) to the Sobolev space

H1−2K(M) with norm uniform in j. By [Kor91, Proposition 4.4], (1 − ∆)−K is a bounded

operator from that space into L2(M), and so the claim holds.

Since the norm of Vj is equal to one, via Lemma 6.3.5 we get for K large enough

sup
j∈N

∥(1 − ∆)−KMψj
∥q,∞ ≤ sup

j∈N

(
∥Mψj

∥∞ · ∥(1 − ∆gxj )−K∥q,∞
)

+ sup
j∈N

(
∥(1 − ∆)−K [(1 − ∆)K ,Mψj

]∥∞ · ∥(1 − ∆gxj )−K∥q,∞
)

< ∞.

It follows from this proposition that for every q > 0 and every j, there exists K > 0 and

a constant CK independent of j such that

∥Mfψj
(1 − ∆)−K∥q,∞ ≤ CK∥f∥L∞(B(xj ,r0)). (6.13)

Let {ψ(0)
j }∞

j=0, {ψ(2)
j }∞

j=0,. . ., {ψ(N)
j }∞

j=0 be a partition of {ψj}∞
j=0 into disjointly supported

subfamilies. That is, for all 0 ≤ k ≤ N , the functions {ψ(k)
j }∞

j=0 are disjointly supported,

and for every j ≥ 0 there exists a unique 0 ≤ k ≤ N such that ψj ∈ {ψ(k)
l }∞

l=0.
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Theorem 6.3.7. Let 0 < p < 2. For sufficiently large K, we have

∥Mf (1 − ∆)−K∥p,∞ ≤ Cp,K,N∥f∥ℓp,∞(L∞);

∥Mf (1 − ∆)−K∥p ≤ C ′
p,K,N∥f∥ℓp(L∞).

Proof. We prove the first inequality, the second can be proved analogously. Let f ∈

ℓp,∞(L∞). Since {ψj}∞
j=1 is a partition of unity, we have

f =
∞∑
j=0

ψjf =
N∑
k=0

∞∑
j=0

ψ
(k)
j f .

By the quasi-triangle inequality, there exists CN ,p such that

∥Mf (1 − ∆)−K∥p,∞ ≤ CN ,p

N∑
k=0

∥∥∥∥∥∥
∞∑
j=0

M
ψ
(k)
j f

(1 − ∆)−K

∥∥∥∥∥∥
p,∞

.

The operators {M
ψ
(k)
j f

(1 − ∆)−K}∞
j=0 are left-disjoint. Hence, Corollary 6.1.2 implies that

there exists q > 0 such that

∥Mf (1 − ∆)−K∥p,∞ ≤ CN ,p,q

N∑
k=0

∥∥∥∥{∥M
fψ

(k)
j

(1 − ∆)−K∥q,∞}∞
j=0

∥∥∥∥
ℓp,∞

From (6.13), it follows that if K is sufficiently large (depending on q), we have

∥Mf (1 − ∆)−K∥p,∞ ≤ CN ,p,q
∥∥∥{∥f∥L∞(B(xj ,r0))}

∞
j=0

∥∥∥
ℓp,∞

.

The latter is the definition of the ℓp,∞(L∞) quasinorm.

Corollary 6.3.8. Let 0 < p < 2. Let P be a self-adjoint, lower-bounded P ∈ EBDm(M).

We have exp(−tP )Mf ∈ Lp,∞ whenever f ∈ ℓp,∞(L∞), and exp(−tP )Mf ∈ Lp whenever

f ∈ ℓp(L∞).

Proof. By the preceding theorem, we already have that for f ∈ ℓp,∞(L∞) and sufficiently

large K, Mf (1 − ∆)−K ∈ Lp,∞. Noting that P + C > 0 and is therefore an invertible

operator on L2(M) for some C ∈ R, by Proposition 4.4 in [Kor91] it follows that (P +C)−1

maps Hs(M) boundedly into Hs+m(M). By Theorem 3.9 in [Kor91], (1 − ∆)K maps

Hs(M) boundedly into Hs−2K(M). Therefore, we can find N ∈ N large enough such that
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(P + C)−N (1 − ∆)K is a bounded operator on L2(M). Noting that exp(−tP )(P + C)N

is a bounded operator for any N by the functional calculus on unbounded operators, the

claim follows. The case for f ∈ ℓp(L∞) is proven analogously.

This corollary will eventually make it possible to apply Theorem 6.0.4 on P and W =Mw

for w ∈ ℓ1,∞(L∞) defined by w(x) = (1+ |B(x0, dg(x,x0))|)−1. We will also need to show

that exp(−tP )[P ,Mw] ∈ L1, but this will require geometric conditions on the manifold

M .

Lemma 6.3.9. Let (M , g) be a complete connected Riemannian manifold of bounded

geometry. Then for any fixed r ∈ R,

lim inf
R→∞

|B(x0,R− r)|
|B(x0,R+ r)|

> 0.

Proof. The paper [GP11] proves that for manifolds of bounded geometry, we have for fixed

R ≥ 1,

1
L

≤ |B(x0,R+ 2)| − |B(x0,R+ 1)| ≤ L(|B(x0,R+ 1)| − |B(x0,R))|

for some constant L > 0 independent of R.

Now with this inequality, one can show by induction that

|B(x0,R+ k)|
|B(x0,R)| ≤ (1 + L)k, R ≥ 1.

For k = 1,

|B(x0,R+ 1)|
|B(x0,R)| ≤ 1 + L

|B(x0,R)| − |B(x0,R− 1)|
|B(x0,R)|

≤ 1 + L.

Suppose that |B(x0,R+k)|
|B(x0,R)| ≤ (1 + L)k for some k, then

|B(x0,R+ k+ 1)|
|B(x0,R)| ≤ |B(x0,R+ k)|

|B(x0,R)| + L
|B(x0,R+ k)| − |B(x0,R+ k− 1)|

|B(x0,R)|

≤ (1 + L)k + L(1 + L)k = (1 + L)k+1.
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Therefore,

lim inf
R→∞

|B(x0,R− r)|
|B(x0,R+ r)|

= lim inf
R→∞

|B(x0,R)|
|B(x0,R+ 2r)|

>
1

(1 + L)K
,

where K is some integer greater than 2r.

Lemma 6.3.10. Let (M , g) be a complete connected Riemannian manifold of bounded

geometry. Then the function

w(x) = (1 + |B(x0, dg(x,x0))|)−1, x ∈ M ,

is an element of ℓ1,∞(L∞)(M).

Proof. We denote dg(x,x0) by r(x). Note that for any x ∈ B(xk, r0) we have r(x) ≥

|xk| − r0 by the triangle inequality, and hence

∥w∥L∞(B(xk,r0)) ≤ (1 + |B(x0, r(xk) − r0)|)−1.

Without loss of generality, order the xj such that r(x1) ≤ r(x2) ≤ . . . . Note that as in

Remark 6.1.8, we have that infj∈N |B(xj , r0)| > 0 and hence

|B(x0, |xk| − r0)| = inf
j∈N

|B(xj , r0)| · |B(x0, |xk| − r0)|
|B(x0, |xk| + r0)|

· |B(x0, |xk| + r0)|
infj∈N |B(xj , r0)|

.

By the ordering of the xj , we know that all the balls B(xj , r0) from j = 1 up to and

including j = k are contained in B(x0, |xk| + r0). Hence

k · inf
m∈N

|B(xm, r0)| ≤
k∑
j=1

|B(xj , k)|

≤ (N + 1) |B(x0, |xk| + r0)| ,

since any ball can only intersect at most N other balls. We thus get

|B(x0, |xk| + r0)| ≥ k

N + 1 inf
j∈N

|B(xj , r0)| .

We will now show that for k large enough, |B(x0,|xk|−r0)|
|B(x0,|xk|+r0)| is bounded below away from zero.

By Lemma 6.3.9 we have

lim inf
R→∞

|B(x0,R− r0)|
|B(x0,R+ r0)|

> 0,
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and so there must be some R0 such that for R ≥ R0 we have |B(x0,R−r0)|
|B(x0,R+r0)| > δ > 0. We claim

that we can take K large enough such that |xk| ≥ R0 for k ≥ K. Indeed, by analogous

reasoning as before, at most K := (N + 1) |B(x0,R0+r0)|
infj |B(xj ,r0)| points xj can be inside the ball

|B(x0,R0)|, thus |xk| > R0 for k > K.

Gathering the results above, we get the existence of some constant C such that for k ≥ K

we have

|B(x0, |xk| − r0)| ≥ Ck.

This means that

∥w∥L∞(B(xk,r0)) ≤ (1 +Ck)−1,

proving that w ∈ ℓ1,∞(L∞)(M ).

We will now mold Property (D) into the form that we will apply it in.

Lemma 6.3.11. Let (M , g) be a complete connected Riemannian manifold of bounded

geometry. If M has Property (D), that is if V (r) := |B(x0, r)| ∈ C2(R≥0) satisfies

V ′(r)

V (r)
∈ L2(R≥1), (6.14)

and
V ′′(r)

V ′(r)
→ 0, r → ∞, (6.15)

then for every h > 0, {
sups∈[0,h] |∂B(x0, k+ 1 + s)|

|B(x0, k+ 1)|

}
k∈N

∈ ℓ2(N). (6.16)

Proof. Using condition (6.15), let ε > 0 and choose R large enough so that r ≥ R implies

that

V ′′(r) ≤ εV ′(r).

For r ≥ R, δ > 0, we have

V ′(r+ δ) = V ′(r) +
∫ r+δ

r
V ′′(s) ds

≤ V ′(r) + εδ sup
s∈[0,δ]

V ′(r+ s).
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Taking the supremum over δ ∈ [0,h] on both sides and rearranging gives

(1 − εh) sup
s∈[0,h]

V ′(r+ s) ≤ V ′(r).

In particular, this implies that

inf
s∈[0,h]

V ′(k+ s) ≥ inf
s∈[0,h]

(1 − εh) sup
t∈[0,h]

V ′(k+ s+ t) ≥ (1 − εh)V ′(k+ h).

Now choose ε < min(1, 1
h ), and we can estimate the L2-norm of V ′(r)

V (r) from below by a

Riemann sum,

∫ ∞

1

(
V ′(r)

V (r)

)2

dr ≥
∞∑
k=1

(
infs∈[0,1] V

′(k+ s)
)2

(
sups∈[0,1] V (k+ s)

)2

≥ C +
∞∑
k=1

(1 − ε)2V
′(k+ 1)2

V (k+ 1)2

≥ C + (1 − ε)2(1 − εh)2
∞∑
k=1

sups∈[0,h] V
′(k+ 1 + h)2

V (k+ 1)2 .

This shows that (6.14) and (6.15) together imply (6.16)

Lemma 6.3.12. Let (M , g) be a non-compact Riemannian manifold with bounded geom-

etry and Property (D). Then

∞∑
k=0

sups∈[−1,2] |∂B(x0, (k+ s)r0)|2

(1 + |B(x0, (k− 1)r0)|)2 < ∞. (6.17)

Proof. Since M has Property (D), Lemma 6.3.11 gives that

∞∑
k=1

sups∈[0,3] |∂B(x0, k+ s)|2

|B(x0, k)|2
< ∞.
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Recall that we can assume r0 ≤ 1. Then,

∞∑
k=0

sups∈[−1,2] |∂B(x0, (k+ s)r0)|2

(1 + |B(x0, (k− 1)r0)|)2

=
∞∑
N=0

∑
N≤kr0≤N+1

sups∈[−1,2] |∂B(x0, (k+ s)r0)|2

(1 + |B(x0, (k− 1)r0)|)2

≤
∞∑
N=0

∑
N≤kr0≤N+1

sups∈[−1,2] |∂B(x0,N + s)|2

(1 + |B(x0,N − 1)|)2

≤
⌈ 1
r0

⌉2 · sup
s∈[0,3]

|∂B(x0, s)|2 +
∞∑
k=1

sups∈[0,3] |∂B(x0, k+ s)|2

|B(x0, k)|2


< ∞.

Note that in the next lemma, we do not need uniform ellipticity of the differential operators

considered, although we will consider operators L ∈ BD2(M) which lack a constant term.

The meaning of this condition is that in a system of normal coordinates (U ,ϕ), where

U = B(x, r0) we have

L =
∑

0<|α|≤2
aα,x(y)D

α.

Equivalently, L1 = 0. The important feature of these operators is that if P ∈ BD2(M)

and f is a smooth function with uniformly bounded derivatives, then [P ,Mf ] = [L,Mf ]

for a differential operator L ∈ BD2(M) with no constant term.

Lemma 6.3.13. Let (M , g) be a non-compact Riemannian manifold with bounded geom-

etry satisfying Property (D) (Definition 6.0.1), and take w : M → R as in Lemma 6.3.10.

Then Lw ∈ ℓ1(L∞)(M) for any L ∈ BD2(M) that lacks a constant term.

Proof. For any x ∈ M we can take a neighbourhood of normal coordinates (U ,ϕ) in which

L takes the following form by definition:

∑
|α|=1,2

aα,x(y)∂
α
y ,

where for any multi-index β
∣∣∣∂βy aα,x(0)

∣∣∣ ≤ Cα,β, x ∈ M .
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Now denote r(x) := dg(x0,x), w̃(r) = (1 + |B(x0, r)|)−1 so that w = w̃ ◦ r. Note that w̃

is a C2 function on [0, ∞) by assumption (Property (D)), and the combination of [Sak96,

Lemma III.4.4] and [Sak96, Proposition III.4.8] gives that r is smooth almost everywhere

with ∥∇r∥ ≤ 1 almost everywhere. We therefore have almost everywhere

|Lw(x)| ≤
∣∣∣∣ ∑

|α|=1
aα,x(0)(∂α(w̃ ◦ r ◦ ϕ−1))(0)

∣∣∣∣+ ∣∣∣∣ ∑
|α|=2
α=β+γ

|β|=|γ|=1

aα,x(0)(∂β∂γ(w̃ ◦ r ◦ ϕ−1))(0)
∣∣∣∣

=

∣∣∣∣ ∑
|α|=1

aα,x(0)(∂α(r ◦ ϕ−1))(0)w̃′(r(x))

∣∣∣∣
+

∣∣∣∣ ∑
|α|=2
α=β+γ

|β|=|γ|=1

aα,x(0)
(
w̃′′(r(x)) · ∂β(r ◦ ϕ−1)(0) · ∂γ(r ◦ ϕ−1)(0)

+ w̃′(r(x)) · ∂β∂γ(r ◦ ϕ−1)(0)
)∣∣∣∣

≤
∣∣∣∣ ∑

|α|=1
aα,x(0)

∣∣∣∣ · |w̃′(r(x))| +
∣∣∣∣ ∑

|α|=2
α=β+γ

|β|=|γ|=1

aα,x(0)
∣∣∣∣ · |w̃′′(r(x))|

+C

∣∣∣∣ ∑
|α|=2
α=β+γ

|β|=|γ|=1

aα,x(0)
∣∣∣∣ · |w̃′(r(x))|

≤ (1 +C) ·
(
|w̃′(r(x))| + |w̃′′(r(x))|

)
,

where we have used the chain rule and

|(∂α(r ◦ ϕ−1))(0)| =
∣∣∣∣ ∂∂xα

∣∣∣∣
x
(r)

∣∣∣∣ ≤ ∥∇r(x)∥ ≤ 1

(because (∇r)α =
∑
β gαβ∂

βr and in normal coordinates at zero, gα,β(0) = δα,β) in

addition to

|∂β∂γ(r ◦ ϕ−1)(0)| ≤ ∥Hess r∥ ≤ C

for some constant C, since the Hessian of r is uniformly bounded [Pet06, Theorem 6.5.27].

By continuity, we therefore have everywhere

|Lw(x)| ≤ (1 +C) · (|w̃′(r(x))| + |w̃′′(r(x))|).
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Therefore

∥Lw∥L∞(B(xj ,r0))
≤ (1 +C) ·

(
sup

s∈[−r0,r0]

∣∣w̃′(r(xj) + s)
∣∣+ ∣∣w̃′′(r(xj) + s)

∣∣ )

≤ (1 +C) ·

 sup
s∈[−r0,r0]

|∂B(x0, r(xj) + s)|
(1 + |B(x0, r(xj) + s)|)2

+ sup
s∈[−r0,r0]

d
dR

∣∣∣∣
R=r(xj)+s

|∂B(x0,R)|

(1 + |B(x0, r(xj) + s)|)2

+ 2 sup
s∈[−r0,r0]

|∂B(x0, r(xj) + s)|2

(1 + |B(x0, r(xj) + s)|)3

.

Next, we calculate∑
j∈N

sup
s∈[−r0,r0]

|∂B(x0, r(xj) + s)|
(1 + |B(x0, r(xj) + s)|)2

=
∞∑
k=0

∑
{j:kr0≤r(xj)<(k+1)r0}

sup
s∈[−r0,r0]

|∂B(x0, r(xj) + s)|
(1 + |B(x0, r(xj) + s)|)2

≤
∞∑
k=0

|{j : kr0 ≤ r(xj) < (k+ 1)r0}| · sup
l∈[−1,2]

|∂B(x0, (k+ l)r0|
(1 + |B(x0, (k+ l)r0)|)2 .

With a similar calculation as in the proof of Lemma 6.3.10, we have

inf
m∈N

|B(xm, r0)| · |{j : kr0 ≤ r(xj) < (k+ 1)r0}|

=
∑

{j:kr0≤r(xj)<(k+1)r0}
inf
m∈N

|B(xm, r0)|

≤
∑

{j:kr0≤r(xj)<(k+1)r0}
|B(xj , r0)|

≤ (N + 1)
(

|B(x0, (k+ 2)r0)| − |B(x0, (k− 1)r0)|
)

≤ 3(N + 1)r0 sup
l∈[−1,2]

|∂B(x0, (k+ l)r0)| ,

since all the balls B(xj , r0) with kr0 ≤ r(xj) ≤ (k + 1)r0 are contained in the annulus

B(x0, (k+ 2)r0) \B(x0, (k− 1)r0), and balls can intersect at most N other balls.

Using Lemma 6.3.12 we can infer that the expression (6.17) is finite, and so
∑
j∈N

sup
s∈[−r0,r0]

|∂B(x0, r(xj) + s)|
(1 + |B(x0, r(xj) + s)|)2 ≤ C ′

∞∑
k=0

supl∈[−1,2] |∂B(x0, (k+ l)r0|2

(1 + |B(x0, (k− 1)r0)|)2 < ∞.
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With analogous calculations, we also have that

∑
j∈N

sup
s∈[−r0,r0]

d
dR

∣∣∣∣
R=r(xj)+s

|∂B(x0,R)|

(1 + |B(x0, r(xj) + s)|)2 < ∞

and ∑
j∈N

sup
s∈[−r0,r0]

|∂B(x0, r(xj) + s)|2

(1 + |B(x0, r(xj) + s)|)3 < ∞.

We conclude that

∥Lw∥ℓ1(L∞) =
∑
j∈N

∥Lw∥L∞(B(xj ,r0)) < ∞.

Corollary 6.3.14. Let P ∈ EBD2(M) be a self-adjoint lower-bounded operator. Let M

be a non-compact Riemannian manifold with Property (D), and take w : M → R as in

Lemma 6.3.10. Then exp(−tP )[P ,Mw] ∈ L1.

Proof. Take P ∈ EBD2(M). Similarly to the proof of Corollary 6.3.8, since exp(−tP )(1 −

∆)K is a bounded operator for all K, it suffices to prove that (1 − ∆)−K−1[P ,Mw] ∈ L1

for K large enough.

First note that

∥(1 − ∆)−K−1[P ,Mw]∥1 ≤
∑
j∈N

∥(1 − ∆)−K−1[P ,Mw]Mψj
∥1.
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Using the expression P =
∑

|α|≤2 aα,xj (y)∂
α
y in the coordinate chart Bj , we have for K ≥ 0

∥(1 − ∆)−K−1[P ,Mw]Mψj
∥1 ≤ ∥(1 − ∆)−K−1 ∑

|α|≤2
[Maα,xj

∂α,Mw]Mψj
∥1

≤ ∥(1 − ∆)−K−1Mψj
MDw∥1

+

∥∥∥∥∥∥(1 − ∆)−K−1 ∑
|α|=2
α=β+γ

|β|=|γ|=1

Maα,xj
(∂γM∂βw + ∂βM∂γw)Mψj

∥∥∥∥∥∥
1

≤ ∥(1 − ∆)−K−1Mψj
MDw∥1

+

∥∥∥∥∥∥(1 − ∆)−K−1 ∑
|β|=1

∑
|γ|=1

Maβ+γ,xj
∂γM∂βwMψj

∥∥∥∥∥∥
1

+

∥∥∥∥∥∥(1 − ∆)−K−1 ∑
|β|=1

Ma2β,xj
∂βM∂βwMψj

∥∥∥∥∥∥
1

=: I + II + III,

where we have denoted D for the differential operator given near xj by

D =
∑

1≤|α|≤2
aα,xj (y)∂

α
y .

That is, D is equal to P without constant terms. Since ψj is by definition supported in

Bj , we have

I = ∥(1 − ∆)−K−1Mψj
MDw∥1

= ∥(1 − ∆)−K−1Mψj
MχBj

MDw∥1

≤ ∥(1 − ∆)−K−1Mψj
∥1∥MχBj

MDw∥∞

= ∥(1 − ∆)−K−1Mψj
∥1∥Dw∥L∞(Bj).

By Proposition 6.3.6, ∥(1 − ∆)−K−1Mψj
∥1 is uniformly bounded in j for K large enough,

and by Lemma 6.3.13, {∥Dw∥L∞(Bj)}j∈N ∈ ℓ1.
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II = ∥(1 − ∆)−K−1 ∑
|β|=1

∑
|γ|=1

Maβ+γ,x∂
γM∂βwMψj

∥1

≤ ∥
∑

|β|=1

∑
|γ|=1

(1 − ∆)−K−1[Maβ+γ,x , ∂γ ]MχBj
M∂βwMψj

∥1

+ ∥
∑

|β|=1

∑
|γ|=1

(1 − ∆)−K−1∂γMχBj
Maβ+γ,xM∂βwMψj

∥1

= ∥
∑

|β|=1

∑
|γ|=1

(1 − ∆)−K−1M∂γaβ+γ,xMχBj
M∂βwMψj

∥1

+ ∥
∑

|β|=1

∑
|γ|=1

(1 − ∆)−K−1∂γMχBj
Maβ+γ,xM∂βwMψj

∥1

≤
∑

|β|=1

∑
|γ|=1

∥(1 − ∆)−K−1Mψj
∥1∥∂γaβ+γ,x∥L∞(Bj)∥∂

βw∥L∞(Bj)

+
∑

|β|=1

∑
|γ|=1

∥(1 − ∆)−1∂γMχBj
∥∞∥(1 − ∆)−KMψj

∥1∥aβ+γ,x∥L∞(Bj)∥∂
βw∥L∞(Bj).

Suppose y is in the normal neighbourhood (Ux,ϕx) of x. Then, D being a local operator,

at y (taking ỹ = ϕx(y)), there are two different expressions of D in normal coordinates:

D =
∑

|α|≤2
aα,x(ỹ)∂

α
x

=
∑

|β|≤2
aβ,y(0)∂βy .

Hence we can express aα,x(ỹ) in terms of aβ,y(0) and transition functions ∂αy
∂xα . These are

uniformly bounded by the definition of a differential operator with bounded coefficients

and [Kor91, Proposition 1.3]. Therefore ∥aβ+γ,x∥L∞(Bj) and also ∥∂γaβ+γ,x∥L∞(Bj) are

uniformly bounded in j. Likewise (taking |β| = 1),

|∂βxw(y)| =
∣∣∣∣ ∑

|α|=1

∂αy

∂xα
∂αy w(y)

∣∣∣∣
≤ Cd∥∇r∥|w̃′(y)|,

and hence {∥∂βw∥L∞(Bj)}j∈N ∈ ℓ1 by the arguments in the proof of Lemma 6.3.13.
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Finally,

∥(1 − ∆)−1∂γMχBj
∥∞ ≤ sup

|α|=1
∥∂

αy

∂xα
∥L∞(Bj)∥(1 − ∆)−1|∇|∥∞ < ∞,

uniformly in j. The same estimates hold for III.

Combining everything, we have

∥(1 − ∆)−K−1[P ,Mw]∥1 ≤
∑
j∈N

∥(1 − ∆)−K−1[P ,Mw]Mψj
∥1 < ∞.

Gathering all results in this section, let M be a non-compact manifold of bounded ge-

ometry with Property (D). Let P ∈ EBD2(M ) be self-adjoint and lower-bounded. Then

exp(−tP )Mw ∈ L1,∞ by the Cwikel estimate in Corollary 6.3.8 and Lemma 6.3.10. Corol-

lary 6.3.14 states that exp(−tP )[P ,Mw] ∈ L1. Theorem 6.0.4 then gives that

Trω(e−tPMw) = lim
ε→0

εTr(e−tPχ[ε,∞)(Mw)),

if the limit on the right hand side exists. If we assume that P admits a density of states,

we do in fact get the existence of the limit∫
R
e−tλ dνP (λ) = lim

R→∞

1
|B(x0,R)|Tr(e−tPMχB(x0,R)

)

= lim
ε→0

εTr(e−tPχ[ε,∞)(Mw)).

Note that the above calculation assumes that the volume of M is infinite, which is equiv-

alent with M being non-compact (see Remark 6.1.8).

Hence,

Trω(e−tPMw) =
∫

R
e−tλ dνP (λ), t > 0.

From this we can easily deduce by a density argument that

Trω(f(P )Mw) =
∫

R
f dνP , f ∈ Cc(R).

For details, see [AMSZ20, Remark 6.3]. This concludes the proof of Theorem 6.0.3.
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6.4 Roe’s index theorem

The results of the preceding section were stated for operators P acting on scalar valued

functions on M . Identical results, with the same proofs, apply to operators acting between

sections of vector bundles of bounded geometry. In the terminology of Shubin [Shu92], a

rank N vector bundle π : S → M is said to have bounded geometry if in every coordinate

chart {B(xj , r0)}∞
j=0 (as defined in Section 6.1.2) E has a trivialisation

π−1(B(xj , r0)) ≈ B(xj , r0) × RN

such that the transition functions

tj,k : B(xj , r0) × RN ∩B(xk, r0) × RN → B(xj , r0) × RN ∩B(xk, r0) × RN

have uniformly bounded derivatives in the exponential normal coordinates around xj or

xk. See also [Eic09, Page 65].

For our purposes we will assume that S → M is equipped with a Hermitian metric h,

which is assumed to be a C∞-bounded section of the bundle S ⊗ S in the terminology of

Shubin [Shu92, Appendix 1]. We denote L2(S) for the Hilbert space of square integrable

sections of S with respect to the volume form of M and the Hermitian metric h.

Shubin defines elliptic differential operators acting on sections of vector bundles of bounded

geometry. Given a vector bundle S of bounded geometry, define EBDm(M ,S) as the

space of differential operators P such that in the exponential normal coordinates y around

x ∈ M , we have

P =
∑

|α|≤m
aα,x(y)∂

α
y

where aα,x(y) are N ×N matrices, identified with sections of End(S) in the local trivial-

isation of S and a synchronous frame, and

∥∂βy aα,x(0)∥ ≤ Cα,β, |α| ≤ m

where ∥ · ∥ is the norm on the fibre End(S)x defined by the Hermitian metric h.
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Given such an operator P ∈ EBD2(M ,S), we say by analogy with the scalar-valued case

that P has a density of states νP if for every t there exists the limit

lim
R→∞

1
|B(0,R)|Tr(e−tPMχB(0,R)

) =
∫

R
e−tλ dνP (λ).

Here, the trace is now with respect to the Hilbert space L2(S) rather than L2(M). A

verbatim repetition of the proof of Theorem 6.0.3 shows the following.

Theorem 6.4.1. Let S → M be a vector bundle of bounded geometry over a non-compact

Riemannian manifold of bounded geometry with Property (D). If P ∈ EBD2(M ,S) is a

self-adjoint lower bounded operator having a density of states νP , then for f ∈ Cc(R) we

have

Trω(f(P )Mw) =
∫

R
f(λ) dνP (λ)

where w(x) = (1 + |B(x0, d(x,x0))|)−1. Similarly, for all t > 0 we have

Trω(exp(−tP )Mw) =
∫

R
exp(−tλ) dνP (λ).

In [Roe88], Roe considers (orientable) manifolds of bounded geometry that have a regular

exhaustion. In this section, we will only consider manifolds that satisfy the assumptions

of Theorem 6.0.3. In particular, the assumptions imply that limR→∞
|∂B(x0,R)|
|B(x0,R)| = 0, i.e.

any increasing sequence of metric balls {B(x0,Ri)}∞
i=0 where R → ∞ forms a regular

exhaustion.

Denote the Banach space of C1 uniformly bounded n-forms on M by Ωn
β(M ). An ele-

ment m in the dual space of Ωn
β(M ) is said to be associated with the regular exhaustion

{B(x0,Ri)} if for each bounded n-form α

lim inf
i→∞

∣∣∣∣∣⟨α,m⟩ − 1
|B(x0,Ri)|

∫
B(x0,Ri)

α

∣∣∣∣∣ = 0.

The algebra U−∞(M ) consists of operators A : C∞
c (M) → C∞

c (M ) such that for each

s, k ∈ R, A has a continuous extension to a quasilocal operator from Hs(M) → Hs−k(M).

In Roe’s terminology, an operator A : Hs(M) → Hs−k(M) is quasilocal if for each K ⊂ M

and each u ∈ Hk(M) supported within K,

∥Au∥Hs−k(M\Pen+(K,r)) ≤ µ(r)∥u∥Hs(M),
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where µ : R+ → R+ is a function such that µ(r) → 0 as r → ∞, and Pen+(K, r) is the

closure of ⋃{B(x, r) : x ∈ K}.

Operators A ∈ U−∞(M) are represented by uniformly bounded smoothing kernels

Au(x) =
∫
kA(x, y)u(y) dνg(y),

where νg is the Riemannian volume form (recall that M is assumed to be oriented).

Roe then defines traces on U−∞(M) coming from functionals associated with our regular

exhaustion by

τ (A) = ⟨αA,m⟩,

where αA is the bounded n-form defined by x → kA(x,x) dνg.

Recall from the introduction of this chapter that the trace τ extends to a trace on

Mn(U+
−∞), and hence descends to a dimension-homomorphism

dimτ : K0(U−∞) → R.

Furthermore, since Roe showed that elliptic differential operators are invertible modulo

U−∞ [Roe88], one can define an abstract index of an elliptic differential operator act-

ing on sections of a Clifford bundle as an element of K0(U−∞) via standard K-theory

constructions. The Roe index theorem then states the following.

Theorem 6.4.2 (Roe index theorem). Let M be a Riemannian manifold, S a graded

Clifford bundle on M , both with bounded geometry. Let D be the Dirac operator of S. Let

m and τ be defined as above. Then

dimτ (Ind(D)) = m(I(D)),

where I(D) is the integrand in the Atiyah–Singer index theorem.

The basis for the proof of the theorem is the following McKean–Singer formula

dimτ (Ind(D)) = τ (ηe−tD2
)

where η is the grading operator on S, and τ is now defined on operators on acting on

sections of S.
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The following lemma relates Roe’s τ functional to the density of states. We will use the

fact that if P is elliptic and self-adjoint, then the mapping

f 7→ τ (f(P ))

is continuous on f ∈ Cc(R). Indeed, by the Sobolev inequality the uniform norm of the

integral kernel of f(P ) is bounded above by the norm of f(P ) as an operator from a

Sobolev space of sufficiently negative smoothness to a Sobolev space of sufficiently pos-

itive smoothness. Since f is compactly supported, by functional calculus, the operator

f(P )(1 + P )N is bounded on L2(M ,S) for every N , with norm depending on the width

of the support of f and the uniform norm of f . Since P is elliptic, it follows from these

arguments that if f is supported in [−K,K] then there is a constant CK such that

|τ (f(P ))| ≤ CK∥f∥∞.

See the related arguments in [Roe88, Proposition 2.9, Proposition 2.10].

Lemma 6.4.3. Let S → M be a vector bundle of bounded geometry, and let P ∈

EBDm(M ,S) for some m > 0. Assume that P has a density of states νP with respect

to the base-point x0 ∈ M . If τ is associated with the exhaustion {B(x0,Ri)}∞
i=0 for some

sequence Ri → ∞, then

τ (f(P )) =
∫

R
f dνP , f ∈ Cc(R).

Similarly,

τ (exp(−tP )) =
∫

R
exp(−tλ) dνP (λ), t > 0.

Proof. By Theorem 6.4.1, we have

Trω(exp(−tP )Mw) =
∫

R
e−tλ dνP (λ)

= lim
R→∞

1
|B(x0,R)|Tr(exp(−tP )MχB(x0,R)

)

= lim
R→∞

1
|B(x0,R)|

∫
B(x0,R)

trEnd(Sx)(Kexp(−tP )(x,x)) dνg(x)

= τ (exp(−tP )),
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Since

f 7→ τ (f(P )), f ∈ Cc(R)

is continuous in the sense described in the paragraph preceding the theorem, it follows

from the Riesz theorem that there exists a measure µτ ,P on R such that

τ (f(P )) =
∫

R
f dµτ ,P , f ∈ Cc(R).

Since µτ ,P and νP have identical Laplace transform, it follows that µτ ,P = νP .

A combination of Lemma 6.4.3 and Theorem 6.4.1 immediately yields the following:

Theorem 6.4.4. Let M be a manifold that satisfies the assumptions of Theorem 6.0.3,

and let S → M be a vector bundle of bounded geometry. Let P ∈ EBD2(M ,S), be self-

adjoint and lower-bounded, and assume it admits a density of states νP at x0. Let w be

the function on M defined by

w(x) = (1 + |B(x0, dg(x,x0))|)−1, x ∈ M .

Then for any f ∈ Cc(R) we have

τ (f(P )) = Trω(f(P )Mw)

for any τ associated with the regular exhaustion {B(x0,Ri)}i∈N where Ri → ∞, and for

any extended limit ω. Similarly,

τ (exp(−tP )) = Trω(exp(−tP )Mw)

The preceding theorem is proved under the strong assumption that P admits a density

of states, which in particular implies that τ (exp(−tP )) is independent of the choice of

functional m used to define τ . Addressing the question of determining which traces τ and

which extended limits ω are related in this way in general is beyond the scope of this

chapter.

Roe [Roe88] defines an algebra U−∞(E) of operators acting on sections of a vector bundle

E, and τ is extended to U−∞(E) essentially by composing τ with the pointwise trace on

End(E), see [Roe88] for details.
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Theorem 6.4.5. Let M be a non-compact Riemannian manifold of bounded geometry

with Property (D), with a graded Clifford bundle S → M of bounded geometry. Let D be

a Dirac operator on M associated with the Dirac complex

C∞(S+)
D+−−→ C∞(S−),

where D+ is the restriction of D to the sections of S+ and D− = D∗
+ is its adjoint

(cf. [Roe98, Chapter 11]). Let D2 admit a density of states both when considered as an

operator restricted to L2(S+) and L2(S−), in the sense that

lim
R→∞

1
|B(x0,R)|Tr(exp(−tD−D+)MχB(x0,R)

) =
∫

R
e−tλ dνD−D+(λ), t > 0,

for a Borel measure νD−D+ and similarly for D+D−. Then for any f ∈ Cc(R) such that

f(0) = 1, we have

dimτ (IndD) = Trω(ηf(D2)Mw).

Proof. By [Roe88, Proposition 8.1], we have that

dimτ (IndD) = τ (η exp(−tD2)), t > 0

where η is the grading operator

η =

1 0

0 −1


with respect to the orthogonal direct sum L2(S) = L2(S+) ⊕L2(S−).

The proof of the theorem amounts to showing that

τ (ηe−tD2
) = Trω(ηe−tD2

Mw).

The left-hand side is the same as

τ (e−tD+D−) − τ (e−tD−D+)

while the right hand side is

Trω(e−tD+D−Mw) − Trω(e−tD−D+Mw).

Applying Theorem 6.4.1 to D+D− and D−D+ individually proves the result.

200



6.5. AN EXAMPLE WITH A RANDOM OPERATOR

Remark 6.4.6. The index dimτ (Ind(D)) is computed by a version of the McKean–Singer

formula [Roe88, Proposition 8.1]

dimτ (Ind(D)) = τ (η exp(−tD2))

for arbitrary t > 0. One of the motivations in developing the present theorem was to give

a new explanation of why the function

t 7→ τ (η exp(−tD2))

is independent of t. If the assumptions of Theorem 6.4.5 hold, then

τ (η exp(−tD2)) = Trω(ηe−tD2
Mw).

Formally differentiating the right hand side with respect to t and using the tracial property

of Trω yields
d

dt
Trω(ηe−tD2

Mw) = −1
2Trω(ηe−tD2

D[D,Mw]).

Our conditions ensure that e−tD2
D[D,Mw] is trace-class, and hence that

d

dt
Trω(ηe−tD2

Mw) = 0.

It is interesting that Trω(ηe−tD2
Mw) and the traditional heat supertrace Tr(ηe−tD2

) on a

compact manifold are both independent of t for apparently different reasons.

6.5 An example with a random operator

This section has mostly been the work of Edward McDonald.

The assumptions in Theorem 6.0.3 appear quite strong, especially the existence of the

density of states. The following example of a random operator on a non-compact manifold

where the density of states exists was given by Lenz, Peyerimhoff and Veselić [LPV07],

generalising earlier examples in [LPV04; PV02].
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Example 6.5.1. [LPV07, Example (RSM)] Let (M , g0) be the connected Riemannian

covering of a compact Riemannian manifold X = M/Γ, where Γ is an infinite group

acting freely and properly discontinuously on M by isometries. Assume that there is an

ergodic action α of Γ on a probability space (Ξ, Σ, P), and let {gξ}ξ∈Ξ be a measurable

family of metrics on M which are uniformly comparable with g0, in the sense that there

exists A > 0 such that
1
A
g0(v, v) ≤ gξ(v, v) ≤ Ag0(v, v).

for all tangent vectors v to M . Assume that the action α of Γ on Ξ is compatible with the

action on Γ on M in the sense that gα−1
γ ξ is the pullback of gξ under the automorphism

defined by γ.

Similarly, it is assumed that there is a measurable family {Vξ}ξ∈Ξ of smooth functions on

M such that

Vξ ◦ γ = Vα−1
γ ξ.

Let νξ denote the Riemannian volume form on M corresponding to gξ, and let ∆ξ be the

Laplace-Beltrami operator on (M , gξ). Then [LPV07] consider the operator on L2(M , νξ)

given by

Hξ = −∆ξ +MVξ
.

What is shown in [LPV07, Equation (27)] is that if Γ is amenable, then for every tempered

Følner sequence {An}∞
n=0 in Γ, the limit

lim
n→∞

1
|An|

TrL2(M ,νξ(MχAnF e
−tHξ)

exists for almost every ξ, where F is a fundamental domain for Γ.

Recall that a we say that a Følner sequence {An}∞
n=0 is tempered if there is a constant

C > 0 such that for every n ≥ 1 we have∣∣∣∣∣∣
⋃
k<n

A−1
k An

∣∣∣∣∣∣ ≤ C|An|.

We will make one further assumption: that the measure ν0 associated with g0 has a
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doubling property. That is, there exists a constant C such that

ν0(Bg0(x0, 2R)) ≤ Cν0(Bg0(x0,R)), R > 0.

Note that since the identity function is a bi-Lipschitz continuous map from (M , g0) to

(M , gξ), the same holds for the measures νξ associated with the metrics gξ.

Proposition 6.5.2. Let (M , g0) be as above, and let

wξ(x) =
1

1 + νξ(Bgξ
(x0, dgξ

(x,x0)))
, x ∈ M .

If M satisfies Property (D), the density for Hξ exists almost surely, and for almost all

ξ ∈ Ξ,

Trω(f(Hξ)Mwξ
) =

∫
R
f(λ) dνHξ

(λ), f ∈ Cc(R),

for every extended limit ω ∈ ℓ∗∞.

Proof. For brevity, we will denote the measure νξ by | · | and B(x0,R) for Bgξ
(x0,R).

We will show that Property (D) implies that Γ admits a tempered Følner sequence {An}∞
n=1,

and that for any bounded measurable function g on M we have

lim
k→∞

1
|AkF |

∫
AkF

g dνξ = lim
R→∞

1
|B(x0,R)|

∫
B(x0,R)

g dνξ (6.18)

if either limit exists. Recall that F is a fundamental domain for the action of Γ. Together

with the results of [LPV07], this implies that the limit

lim
R→∞

1
|B(x0,R)|Tr(MχB(x0,R)

e−tHξ)

exists for every t > 0, and hence the assumptions of Theorem 6.0.3 are satisfied.

Let h > 2diam(F ). For k ≥ h, let

Ak = {γ ∈ Γ : dist(γx0,x0) < k− h}

We claim that Ak is a tempered Følner sequence.
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Note that dist(γx0,x0) = dist(γ−1x0,x0), and so automatically Ak = A−1
k . Define

Bk := AkF =
⋃
γ∈Ak

γF

First we show that B(x0, k − 2h) ⊆ Bk. Indeed, if p ∈ B(x0, k − 2h) there exists some

γ ∈ Γ such that p ∈ γF , so dist(p,x0) ≤ diam(F ) < h, and thus dist(γx0,x0) < k −

2k + h = k− h. On the other hand, since F has diameter smaller than h
2 , if p ∈ Bk then

dist(p,x0) ≤ h
2 + k− h < k. That is, for all k ≥ 2h we have

B(x0, k− 2h) ⊂ Bk ⊂ B(x0, k).

Since the action of Γ is free, the union of the translates of F is disjoint, and

|Bk| = |Ak||F |, k ≥ 0

and hence

|B(x0, k− 2h)| ≤ |F ||Ak| ≤ |B(x0, k)|.

As in the proof of Lemma 6.3.9, we know that for each h > 0 there is a constant Ch so

that we have
|B(x0, k)|

|B(x0, k− 2h)| ≤ Ch, k > 1 + 2h

Therefore,

|Ak| ≈ |Bk| ≈ |B(x0, k)|.

uniformly in k > 1 + 2h.

To see that Ak is Følner, let γ ∈ Γ. By the triangle inequality, there exists N > 0 such

that

γAk ⊂ Ak+N

and, for k sufficiently large,

Ak ⊂ γAk−N

and therefore the symmetric difference of Ak and γAk satisfies

(γAk \Ak) ∪ (Ak \ γAk) ⊂ Ak+N \Ak−N .
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It follows that, as k → ∞,

|(γAk \Ak) ∪ (Ak \ γAk)|
|Ak|

≈ |B(x0, k+N)| − |B(0, k−N)|
|B(x0, k)|

which is vanishing as k → ∞. Hence, {Ak}∞
k=1 is Følner.

To see that {Ak}∞
k=1 is tempered, it suffices to show that there is a constant C such that

|Ak ·Ak| ≤ C|Ak|.

By the triangle inequality and the fact that Γ acts isometrically we see that

Ak ·Ak ⊆ A2k.

Therefore, by the doubling condition,

|Ak ·Ak| ≤ |A2k| =
1

|F |
|B(x0, 2k)| ≲ |B(x0, k)| ≈ |Ak|.

uniformly in k for sufficiently large k. Hence, {Ak}∞
k=1 is tempered.

Finally we prove (6.18). Using the fact that Bk ⊆ B(x0, k), we write

1
|B(x0, k)|

∫
B(x0,k)

g dνξ =
1

|Bk|

∫
Bk

g dνξ +
|Bk| − |B(x0, k)|

|B(x0, k)||Bk|

∫
Bk

g dνξ

+
1

|B(x0, k)|

∫
B(x0,k)\Bk

g dνξ

Therefore,∣∣∣∣∣ 1
|B(x0, k)|

∫
B(x0,k)

g dνξ − 1
|Bk|

∫
Bk

g dνξ
∣∣∣∣∣ ≤ 2∥g∥∞

|B(x0, k)| − |Bk|
|B(x0, k)|

≤ 2∥g∥∞
|B(x0, k)| − |B(x0, k− 2h)|

|B(x0, k)|

and this vanishes as k → ∞. From here one easily deduces (6.18).

6.6 Discrete metric spaces revisited

The abstract operator theoretical result in Theorem 6.0.4 also recovers a weaker version

of the main result from Chapter 5. This section is adapted from [HM23, Section 6], the

first preprint version of [HM24a], which did not appear in the published version.
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As in Chapter 5, take a countably infinite discrete metric space (X, d) such that every

ball contains at most finitely many points, and let x0 ∈ X. Write {rk}k∈N ⊆ R for the

set of values {d(x,x0) : x ∈ X} ordered in increasing fashion. Take a positive radially

symmetric strictly increasing w : X → C such that Mw ∈ L1,∞.

Now take a self-adjoint bounded operator T ∈ B(ℓ2(X)) and C > 0 such that T + C is

strictly positive. Writing P = log(T + C), we have that exp(−tP ) = (T + C)t. Then

Theorem 6.0.4 — using the weaker conditions (6.11) — gives us that if for all t > 0

1. (T +C)tMw ∈ L1,∞;

2. [(T +C)t,Mw] ∈ L1,

then we have for every extended limit ω ∈ ℓ∗∞,

Trω((T +C)Mw) = lim
ε→0

εTr((T +C)χ[ε,∞)(Mw)), (6.19)

whenever the limit on the right hand exists. On the other hand, the main result in

Chapter 5, Theorem 5.0.1, would let us conclude for all bounded T ∈ B(ℓ2(X)) (not just

self-adjoint T )

Trω(TMw) = Trω(Mw) lim
k→∞

Tr(TMχB(x0,rk)
)

|B(x0, rk)|
, (6.20)

whenever the limit on the right-hand side exists. These statements are not equivalent,

namely, the existence of the limit (6.19) is a formally stronger requirement.

Recall that w is assumed to be radially strictly decreasing, so for ε < 0 we can pick k ∈ N

such that

w̃(rk+1) < ε ≤ w̃(rk),
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where w(·) = w̃ ◦ d(x0, ·). Then we have for positive 0 < δ1 < T ∈ B(ℓ2(X)),

εTr(Tχ[ε,∞)(Mw)) − Trω(Mw)
Tr(TMχB(x0,rk)

)

|B(x0, rk)|

≤
(
w̃(rk) − Trω(Mw)

1
|B(x0, rk)|

)
Tr(TMχB(x0,rk)

)

+ w̃(rk)Tr(TMχB(x0,rk+1)\B(x0,rk)
)

≤
∣∣∣∣w̃(rk)|B(x0, rk)| − Trω(Mw)

∣∣∣∣∥T∥∞

+ w̃(rk)|S(x0, rk+1)|∥T∥∞,

where S(x0, rk+1) = B(x0, rk+1) \B(x0, rk). Assuming that X satisfies Property (C), we

have that

w̃(rk)|S(x0, rk+1)| = w̃(rk)|B(x0, rk)|
|S(x0, rk+1)|
|B(x0, rk)|

→ 0, k → ∞,

since Mw ∈ L1,∞ implies that

w̃(rk)|B(x0, rk)| ≤ sup
k∈N

kµ(k,w) < ∞,

where {µ(k,w)}∞
k=0 is the decreasing rearrangement of w.

On the other hand we have

εTr(Tχ[ε,∞)(Mw)) − Trω(Mw)
Tr(TMχB(x0,rk)

)

|B(x0, rk)|

≥
(
w̃(rk+1) − Trω(Mw)

1
|B(x0, rk)|

)
Tr(TMχB(x0,rk)

)

≥ −δ
∣∣∣∣w̃(rk+1)|B(x0, rk)| − Trω(Mw)

∣∣∣∣.
Hence, using Property (C), the condition

lim
k→∞

w̃(k)|B(x0, rk)| = Trω(Mw) (6.21)

allows going from equation (6.19) to (6.20). This does not hold for general w ∈ ℓ1,∞(X),

however. Equation (6.21) requires Mw to be Dixmier measurable, but it is an even stronger

condition than this [LSZ21, Theorem 9.1.6].
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At least for the function w(x) = (1 + |B(x0, d(x,x0))|)−1 condition (6.21) is true due to

Corollary 5.2.3, and we can re-derive a weaker version of Theorem 5.0.1 using Theorem

6.0.4.

Proposition 6.6.1. Suppose T ≥ ε1 > 0,V ∈ B(H) are bounded operators such that

[T ,V ] ∈ L1. Then

[T t,V ] ∈ L1, t > 0.

Proof. Let 0 < t < 1. We have

T t =
sin(πt)
π

∫ ∞

0
λt−1T (λ+ T )−1 dλ.

Then

[T t,V ] =
sin(πt)
π

∫ ∞

0
λt−1[T (λ+ T )−1,V ] dλ

=
sin(πt)
π

∫ ∞

0
λt−1[1 − λ(λ+ T )−1,V ] dλ

=
sin(πt)
π

∫ ∞

0
λt(λ+ T )−1[T ,V ](λ+ T )−1 dλ.

Since T ≥ ε1, we have

∥(λ+ T )−1∥ ≤ (λ+ ε)−1,

and hence

∥[T t,V ]∥1 ≤ sin(πt)
π

∫ ∞

0
λt(λ+ ε)−2 dλ · ∥[T ,V ]∥1 < ∞.

To conclude, for t > 1 we can inductively apply the equality

[T t,V ] = T [T t−1,V ] + [T ,V ]T t−1

to obtain the result.

Theorem 6.6.2. Let (X, d) be a countably infinite discrete metric space such that every

ball contains at most finitely many points, and let x0 ∈ X. Write by {rk}k∈N for the set

d(·,x0) : X → R≥0 ordered in increasing manner. Suppose that

lim
k→∞

|B(x0, rk+1)|
|B(x0, rk)|

= 1. (C)

208



6.6. DISCRETE METRIC SPACES REVISITED

Define the function w(x) = (1 + |B(x0, d(x,x0))|)−1. If T is a bounded self-adjoint oper-

ator on ℓ2(X) for which [T ,Mw] ∈ L1, we have that for every extended limit ω,

Trω(TMw) = lim
k→∞

Tr(TMχB(x0,rk)
)

|B(x0, rk)|
, (6.22)

if the limit on the right-hand side exists.

In particular, if H is a self-adjoint, possibly unbounded, operator on ℓ2(X) with density of

states measure νH , and f ∈ Cc(R) and such that [f(H),Mw] ∈ L1, then for all extended

limits ω

Trω(f(H)Mw) =
∫

R
f dνH . (6.23)

Proof. Let C > 0 such that T +C > δ1 > 0. The fact that Mw ∈ L1,∞, Proposition 6.6.1

and the assumption that [T ,Mw] ∈ L1 give that for all t > 0,

1. (T +C)tMw ∈ L1,∞;

2. [(T +C)t,Mw] ∈ L1.

Hence, Theorem 6.0.4 gives that

Trω((T +C)Mw) = lim
ε→0

εTr((T +C)χ[ε,∞)(Mw)),

whenever the limit on the right-hand side exists. Let ε > 0 small and take k ∈ N such

that (1 + |B(x0, rk+1)|)−1 ≤ ε < (1 + |B(x0, rk)|)−1. Then,

|B(x0, rk)|
1 + |B(x0, rk+1)|

≤ εTr(χ[ε,∞)(Mw)) ≤ |B(x0, rk+1)|
1 + |B(x0, rk)|

.

Due to Property (C), we therefore have

lim
ε→0

εTr(χ[ε,∞)(Mw)) = 1 = Trω(Mw),

using Corollary 5.2.3. Therefore,

Trω(TMw) = lim
ε→0

εTr(Tχ[ε,∞)(Mw)),
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whenever the limit on the right-hand side exists. With the computations given previously,

we can conclude that

Trω(TMw) = lim
k→∞

Tr(TMχB(x0,rk)
)

|B(x0, rk)|
,

if the limit on the right-hand side exists.

Finally, if H is a self-adjoint operator on ℓ2(X) for which the density of states νH exists,

we have the existence of all limits

lim
k→∞

Tr(f(H)MχB(x0,rk)
)

|B(x0, rk)|
, f ∈ Cc(R).

If f ∈ Cc(R) is such that [f(H),Mw] ∈ L1, then also the real part ℜ([f(H),Mw]) =

[ℜ(f)(H),Mw] is trace-class, and likewise the imaginary part. Since ℜ(f)(H) and iℑ(f)(H)

are self-adjoint, by the above we therefore have

Trω(f(H)Mw) =
∫

R
f dνH .

We remark that, in the case that H is self-adjoint, bounded, and [H,Mw] is trace-class,

we get that [f(H),Mw] is trace-class if f is operator-Lipschitz. In particular, this is the

case when f is in the homogeneous Besov space Ḃ1
∞,1(R) [Pel90, Theorem 2].

The condition that [T ,Mw] ∈ L1 is relatively weak. Since the operator [T ,Mw] already

belongs to the commutator subspace

Com(L1,∞) := [B(H), L1,∞],

it follows that [LSZ21, Theorem 5.1.4]
n∑
k=0

λ(k, [T ,Mw]) = O(1).

However, that is not quite enough for it to be trace-class. The following example has been

provided by Teun van Nuland.

Example 6.6.3. Let X = N+ = {1, 2, . . .}, so that Mw : en 7→ 1
nen. Define a bijection

ϕ : N → N by

2n+ 1 7→ 2n,
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and recursively mapping each even integer 2n to the least integer that doesn’t appear in

{ϕ(k) : k < 2n}. Then define the operator T : en 7→ eϕ(n). Observe that T ∗ : en 7→ eϕ−1(n).

By a simple calculation,

[T ,Mw][T ,Mw]
∗en =

( 1
ϕ−1(n)

− 1
n

)
[T ,Mw]eϕ−1(n)

=

( 1
ϕ−1(n)

− 1
n

)2
en.

Hence, [T ,Mw] is trace-class if and only if

∑
n∈N

∣∣∣∣ 1
ϕ−1(n)

− 1
n

∣∣∣∣ = ∑
n∈N

∣∣∣∣ 1n − 1
ϕ(n)

∣∣∣∣ < ∞.

However, ∑
n∈N

∣∣∣∣ 1n − 1
ϕ(n)

∣∣∣∣ > ∑
n∈N

( 1
2n+ 1 − 1

2n
)

,

which diverges. Hence [T ,Mw] is not trace-class.

In conclusion, Theorem 6.6.2 is significantly weaker than Theorem 5.0.1, justifying the

method of proof in Chapter 5.
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